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ABSTRACT

User Experience Aware System Optimizations for Mobile Systems

Emirhan Poyraz

Over the last few years, understanding user experience within mobile systems has become a

popular phenomenon as a means to manage hardware resources. Across the many issues being

studied in this area, I focus on how to utilize user satisfaction in this dissertation. Notably, I

examine user experience by incorporating real end user satisfaction in mobile system designs and

optimizations by conducting a variety of user studies.

While the importance of end user is not debated, the individual end user preferences are still

widely ignored as the modern system designs hinge on the average user by developing a “one-size-

fits-all” approach. In my work, I begin with showing that there exists a significant variation in user

satisfactions across different users - even under the same workloads and/or conditions. Thus, it is

certainly vital to not only focus on the raw performance of the systems, but also to concentrate on

the needs and desires of the end user. I then proceed with demonstrating the tools and methods

needed in order to build highly accurate prediction models for user satisfaction. For the prediction

models, I use system metrics and/or built-in sensor data that is available in modern mobile devices.

I also validate that the proposed models can easily be adopted in any modern mobile systems at

system-level with negligible power consumption. Lastly, I end with conducting user studies in

order to demonstrate how the prediction of user satisfaction can be utilized in hardware compo-

nent managements for the mobile devices. Within these user experiments, I study specifically the

two most power hungry components in order to maximize system-level energy savings: CPU and

screen brightness.

All in all, this dissertation points toward the importance of incorporating the end user’s satis-

faction with the hardware component management to the mobile systems research. Various user

studies that have been conducted as a part of this work illustrates that if we can succeed in placing
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the end user into the design and optimization process, we can achieve significant improvements

with regards to the energy efficiency of current mobile systems while maintaining - or even im-

proving - individual levels of user satisfaction concurrently.
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CHAPTER 1

INTRODUCTION

Recent technological advances have led mobile devices to become an indispensable part of modern

society. In today’s world, people spend more time with their smartphones - averaging 21 hours per

week during which they are using applications 90% of the time - than using any other devices (i.e.,

laptops and desktop-computers). Nevertheless, the increasing dependency on smartphones also

brought a diversified set of motives and workloads emerging from its users. While the smartphones

were used solely for basic communication in the earlier periods, smartphones in the contemporary

world has been embedded in every aspect of our everyday life as they become furnished with many

features that enable “on-the-go” access to various practices (e.g., web-browsing, communication,

shopping, banking, gaming, etc.).

Moreover, the expansion in the collection of the workloads and motivations for usage associ-

ated with mobile devices also brought more variation among user experiences. As the number of

applications and features of smartphones have amplified, user preferences with regards to device

performance or brightness settings also became more pronounced and context dependent. Indeed,

it is quite intuitive to expect users to have diverging experiences based on their age, current work-

load of the device, activity taken underway or environmental conditions at the moment of usage.

In fact, although still quite limited in presence, some manufacturers started to introduce person-

alized settings in some aspects of the phones. Given that the mobile system is evaluated eventually

in the hands of the end user, the importance of addressing user specific preferences as well as

introducing settings tailored towards individuals are becoming the key determinant of success or

failure of a system.

In this dissertation, I integrate individual users’ satisfactions with the mobile system design and

optimizations. Specifically, I focus on bridging the gap between hardware resource management

and end user experience by conducting various user studies. Through the work conducted and
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presented in this dissertation, I aim to develop mobile systems that provide better user experience

with improved hardware resource management schemes.

1.1 Differences In User Preferences

Ranging from external features such as its size and shape to internal features like the CPU per-

formance and screen brightness, humans have a diverse set of preferences regarding their mobile

devices. This divergence can partially arise from demographic factors like user’s age and gender

as well as certain environmental or user’s physical conditions. Brombacher et al. [72] refer to

these differences “in spite of meeting with the explicit product specifications, a customer explic-

itly complains on the (lack of) functionality of the product”. Likewise, there still exists complaints

among users about the off-the-shelf performance of phones for real workloads [146]. In return, this

reveals the crucial need to better understand the individual’s user preferences in order to enhance

user experiences by building more competent mobile systems. Then the question becomes how

can we understand the user experience to achieve this goal. One way to do so relies on the account

of assessing instantaneous user satisfaction.

Indeed, as an unfortunate matter of fact, user satisfaction is discounted in modern mobile sys-

tems despite the importance of the end user. The current state of art typically generalizes the

system as developed solely toward the average user while allowing too little room for implement-

ing individualized personal settings. Inefficiency of this approach comes from the assumption that

all users are expected to have maximum satisfaction with a one-size-fits-all design. In other words,

the assumption goes as if all the users have the exact same or, more closely, similar set of demands

and preferences regarding their mobile devices. However, following and building on some of the

prior work, this dissertation shows that users’ preferences and demands tend to vary significantly

even under the same workloads and/or conditions. A quick solution to overcome this problem is to

customize devices based on each individual’s needs. Although theoretically this implementation

should work, due to scalability and possibility of high-costs, this is not deemed as a practicable

solution. Moreover, it is also possible that users’ preferences may change over time and hence a
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fixed customized solution would still fail in the long run. Maximizing the resources (i.e. maxi-

mizing performance) would still not be a good solution, due to its association with high levels of

energy consumption. Thus, there is a need for systems which learn and adapt to user’s preferences

and needs. If we can (somehow) know end user’s instantaneous satisfaction about the system, we

can then utilize this information to have a number of benefits: we can create dynamic user-aware

decision-making mobile systems.

However, the challenge here arises from measuring and integrating the instantaneous user sat-

isfaction in real time. User satisfaction is inherently a subjective metric, which is affected often

times by the limits of human perception and the preconceptions of an individual. The work pre-

sented in this dissertation shows some of the tools to predict instantaneous user satisfaction as well

as showing how to use it as a global feedback input to better manage hardware resources in the mo-

bile systems. In line with the previous work, I show that incorporating information stemming from

an end user’s satisfaction to the development of mobile systems leads to improved systems both in

terms of the overall user experience and associated levels of energy consumption in comparison to

standard techniques that allocate resources based on the experience of an average user.

1.2 Utilizing User Satisfaction

In this dissertation I utilize user satisfaction as a means for two distinct purposes. In the first ap-

proach, I use user satisfaction as a feedback input in order to manage hardware resources. The aim

is to maximize user satisfaction while minimizing energy consumption. In the second approach,

I show an alternative usage of user satisfaction where I use it to avoid harmful habits associated

with smartphones. Notably, in this approach, I degrade user experience with the aim of mitigating

overuse of smartphones. Below I briefly introduce and discuss these two approaches.

1.2.1 Managing Hardware Resources

The increasing dependency on smartphones brought with itself the demand for more capability

and performance. To accommodate this increase in the demands, smartphones have constantly
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evolved and improved by adopting new hardware features and components. It is rather common

knowledge that management of these components in mobile systems is crucial as they determine

level of energy satisfaction and associated user experience. In addition, given the fact that the

form of a smartphone ultimately limits its battery size, and hence the amount of stored energy,

the importance of an efficient management becomes even more vital. However, as was already

discussed, the assumption that users do not vary in their satisfaction levels with their mobile devices

causes the current systems to be depicted as inefficient. Furthermore, this assumption also fails to

open up the possibility for more personalized settings, making the current management systems

become sub-optimal for an individual user.

In spite of the fact that there exists a diverse set of hardware components - as well as extensive

amount of studies associated with them-, many tend to focus on the subset of the components that

have relatively more energy consumption (i.e. CPU, screen, WiFi). Likewise, in this dissertation,

I focus on two most energy-hungry components: high performance mobile CPUs and mobile dis-

plays. As was already alluded, I integrate user satisfaction as a feedback mechanism on mobile

devices. Notably, I correlate user satisfaction with other user-facing metrics and built-in sensors in

smartphones as a means to manage mobile CPUs and display.

Although there exists a wealth of metrics to evaluate the phone such as its shape and weight,

when it comes to managing hardware resources, not all metrics can be characterized as helpful

as the others. For example, whereas the size of the phone could be a an important aspect for

a customer, it is not insightful when evaluating its performance. On the other hand, frame per

second (fps) of the screen can provide much more information given that smoothness of the screen

is highly dependent on the level of fps. Hence, I choose specifically the metrics that give more

insight on the phone’s performance or the metrics that provide information from the side of the

end user by evaluating the perception of the phone’s performance. The details of this study can be

found in Section 2.

Furthermore, sensor technology on mobile devices showed an enormous amount of improve-

ment over the course of the decades. Whereas less than a decade ago, smartphones had only a few
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sensors; today they have more than a dozen sensors with additional capabilities as well as lower

power consumption levels [17]. The evolution of sensors also inevitably brought along various

brand-new capabilities to mobile devices. For example, smartphones can now recognize complex

human activities and gestures, detect users’ stress levels or emotional states, predict pin numbers

and more. In this dissertation, I utilize built-in sensors to predict user satisfaction and manage CPU

and screen components on a smartphone accordingly.

1.2.2 Mitigating Smartphone Overuse

Although smartphones have helped to improve the quality of life by enabling “on-the-go” access

to several activities in some sectors (e.g., web-browsing, communication, shopping, banking, gam-

ing, etc.), the increasing dependency on smartphones also brought a growing number of concerns

regarding their negative impacts associated with their excessive usage. Recent research has high-

lighted a number of potential problems as a consequence of mobile overuse: addiction, financial

problems, and dangerous actions associated with its use (e.g., whilst driving) [83, 143]. There

also exists a rising concern among parents regarding their children’s excessive phone usage given

the possibility of negative effects on both their social and academic life [83, 143, 145]. In addi-

tion, studies also show certain harmful health effects that might be caused by the immoderate use

of phones including cancer, headache, sleep disorder, anxiety, and depression [35]. Indeed, the

World Health Organization considers excessive mobile phone use as a public health concern [101],

emphasizing the need for more research on preventive measurements.

Despite the importance of reducing excessive phone usage given the growing number of con-

cerns, the number of proposed methods -as well as their efficiencies- remain quite limited and/or

still unknown. Whereas a quick solution to reduce over usage would be implementing time re-

strictions to the applications, it has been shown that such restrictions can possibly cause significant

side effects on users such as anxiety and depression [2, 95]. Thus, there exists certainly a need to

develop better methods to mitigate overuse of smartphones in daily life.

In this dissertation, I degrade user experience by controlling brightness of the display with the
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aim of reducing excessive phone usage. The motivation behind this study relies on the hypothesis

that creating discomfort on the part of the end user by altering brightness levels (or showing pseudo

pop-ups on the screen) will yield the user to spend less time with the applications and hence their

phones. In order to test this hypothesis, I develop three different models where I degrade user

satisfaction on the target phone by 1) gradually dimming brightness, 2) rapidly dimming brightness

and 3) showing pseudo pop-ups on the screen. I show that, with a small sacrifice, excessive phone

usage can be decreased by up to 37.82%. The details of this study can be found in Section 6.

1.3 Attribution

For reference, the main contributions presented in this dissertation have previously appeared in the

following conference publications or currenly under review:

• Emirhan Poyraz, Prethvi Kashinkunti, Matt Schuchhardt, Michael Kishinevsky, Niranjan

Soundararajan and Gokhan Memik. Understanding the Impact of Number of CPU Cores

on User Satisfaction in Smartphones. 16th EAI International Conference on Mobile and

Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2019.

• Emirhan Poyraz and Gokhan Memik. Using Built-In Sensors to Predict and Utilize User

Satisfaction for CPU Settings on Smartphones. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies. IMWUT/UbiComp 2019.

• Emirhan Poyraz and Gokhan Memik. Using Built-in Sensors to Control Screen Brightness

In-the-Wild. Under review.

• Emirhan Poyraz and Gokhan Memik. Quantifying the Importance of Energy Savings on

Smartphone User Satisfaction. Under review.

• Emirhan Poyraz and Gokhan Memik. Phone Free: Mitigating Smartphone and Application

Overuse. Under review.
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• Emirhan Poyraz and Gokhan Memik. Analyzing power consumption and characterizing user

activities on smartwatches: summary. 2016 IEEE International Symposium on Workload

Characterization. IISWC 2016.

As the citations show, the work in this presentation comes from a set of collaborative work with

several co-authors who have made critical contributions to the work. Thus, it is important to note

that any mentions of “we” in the subsequent chapters refer to myself as well as my co-authors.

1.4 The Organization of the Thesis

The motivation of this dissertation follows from a set of sequential research questions. Some of

the main ones are presented below:

RQ1: How do users’ performance experiences differentiate in the mobile devices?

RQ2: Can we correlate user satisfaction with system metrics in order to manage CPU settings

in smartphones?: CPU management using system metrics – Chapter 2

RQ3: How about built-in sensors? It is possible that some sensors can give insights about the

current satisfaction level of users. So can we utilize sensors to correlate user satisfaction to manage

CPU settings?: CPU management using built-in sensors – Chapter 3

RQ4: How about other components? Can we utilize sensors to manage display brightness?:

Controlling brightness using built-in sensors – Chapter 4

RQ5: Better management techniques can lead to significant energy savings, but do users really

care about these optimizations? If they do how much they really care?: Quantifying the importance

of energy savings – Chapter 5

RQ6: How else can we benefit from the instantaneous user experience in mobile devices? Can

we utilize user satisfaction in order to avoid bad habits?: Mitigating smartphone and application

overuse – Chapter 6

Once I discuss my studies in Chapters 2-6, I present Related Work in Chapter 7 and I conclude

my dissertation in Chapter 8.
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IMPACT OF NUMBER OF CPU CORES ON USER SATISFACTION IN

SMARTPHONES

Smartphones have already become an essential part of everyday life. Today, there are more than 2.5

billion active smartphone users in the world [122]. The increasing dependency on smartphones also

brings demand for more capability and performance. To accommodate these increasing demands,

smartphones have constantly improved and adopted new hardware features.

One of these features is high performance mobile CPUs. In order to increase the computational

performance, mobile CPUs have been improved steadily over the years. They first evolved by

increasing the CPU clock frequency to enhance the performance. When this approach faced the

peak frequency limit barrier due to heat and exponential increase of power consumption, mobile

CPUs have shifted to multi-core architectures [142, 34]. In recent years, smartphones have finally

adopted core asymmetry as “big” performance-optimized cores, and “LITTLE” energy-optimized

cores to improve the power efficiency and achieve higher performance levels [34].

Despite the wide usage of multicore smartphones in the market, how much these cores impact

end user experience still remains unclear. Since current operation systems and firmware manage

DVFS (dynamic voltage -frequency scaling) based on the CPU utilization, end users’ satisfaction is

(largely) ignored. However, prior work shows that user satisfaction on multicore smartphone varies

between different CPU configurations [63]. Not all users are affected the same by the changes in

CPU core/frequency for a given workload. Additionally, there are still complaints among users

about the off-the-shelf performance of phones for real workloads [146]. Therefore, there is a need

to understand the impact of smartphone performance on user satisfaction in order to effectively

manage smartphone computational resources. If users’ performance satisfaction is known, we

can manage mobile CPU settings in a much more efficient manner; we can reduce the power

consumption if doing so does not cause dissatisfaction or increase performance when necessary.
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The challenge to achieve this is to be able to predict satisfaction accurately in real time.

In this project we study CPU cores’ impact on user satisfaction and power consumption through

user studies. Overall, we conduct two types of experimental studies with real users. We define them

as In-the-Lab and In-the-Wild experiments.

In In-the-Lab experiments we study CPU configurations’ impact on user satisfaction and power

consumption in varying applications. In this experiment, we ask users to repeat a simple task for

seven different applications. Between repetitions, the number of cores and core frequency are

altered in the background. Along with the user satisfaction reports, we also collect data for the

instantaneous power consumption and user facing metrics, such as frame rate and input lag.

We first demonstrate that while users report higher satisfaction with higher core counts for

some applications, there are cases where the additional cores only lead to increased power con-

sumption without increasing user experience. Additional cores can also be utilized to reduce the

power consumption of the system for a set of applications. Given the high correlation between the

collected data and user satisfaction reports, we then propose a system to save energy by altering

CPU core count and frequency while keeping users satisfied. The system utilizes a set of user-

facing metrics (Table 2.1) to predict user satisfaction and set CPU configuration in the phone in

order to save energy. We validate the proposed system by building prediction models and show that

we can predict satisfaction with over 97% accuracy on average when a binary satisfaction model

is used (i.e., users indicating satisfied versus unsatisfied). The prediction accuracy is over 90% on

average if a 5-level satisfaction model is used.

In In-the-Wild experiments, we evaluate the proposed system with real workloads. Specifically,

using the proposed system, we build two models: a static user-independent and a dynamic user-

dependent model in order to predict satisfaction and set CPU configuration in daily usage. For these

experiments, we ask users to use an octa-core smartphone as their primary phone for one-week.

Users test the CPU settings of the two models on the given phone. We show that, compared to

default scheme, total system energy consumption can be reduced by 12.3% and 11.8% on average

with the user-independent and user-dependent models, respectively, without a significant change
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Table 2.1: Metrics Collected For Each Application

mean-frame-per-second, start-and-stop-handler-lag,
stdev-frame-per-second, click-input-lag,
mean-combined-frame-per-second, mean-max-click-handle-time,
mean-max-frametime, stdev-max-click-handle-time,
stdev-max-frametime, video-load-time,
mean-combined-frametime, showing-control-time,
mean-max-touch-handler-time, cpu utilization and frequency,
stdev-max-touch-handler-time, mean-number-of-threads,
mean-max-image-load-time, current and voltage (for power),
stdev-max-image-load-time, mean-drag-time,
mean-max-drag-frametime, stdev-drag-time,
stdev-max-drag-frametime, relative visual performance,

in users’ satisfactions. To the best of our knowledge, this is the first scientific study analyzing the

impact of core count on real users and showing methods and tools to predict user satisfaction to

manage heterogeneous smartphone architecture in the wild. Specifically, we make the following

contributions:

• We demonstrate that users’ satisfaction with the CPU performance of their smartphones vary

considerably between applications and users.

• We show that smartphone CPU configurations with more cores can lead to higher energy

consumption without increasing user satisfaction for some applications, but that more cores

are necessary to achieve maximum satisfaction for other applications.

• We propose a system utilizes user-facing metrics to predict user satisfaction and alter CPU

configuration in real-time in order to save energy.

• We propose tools and methods to develop personalized models learn from personal perfor-

mance preferences online in the wild.

The rest of the chapter is structured as follows. In Section 2.1, I introduce the In-the-Lab

user study. I then analyze the collected data, discuss the impact of smartphone CPUs on user

satisfaction and explain the proposed system (Section 2.2). In Section 2.3, I describe our In-The-

Wild study along with the tested models and least power consuming CPU configuration selection
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methodology. In Section 2.4, I show our study on the data collected during In-The-Wild study, and

discuss the results. I present discussion and further analysis in Section 2.5. In section 2.6, Finally,

I conclude the chapter 2.7.

2.1 Experimental Study: In-The-Lab

The purpose of In-the-Lab experiments is to understand the impact of the number of cores on

a smartphone on user satisfaction. This user study was performed on 20 smartphone owners.

The majority of participants were college students and all participants were under the age of 50.

Participants were gathered through fliers advertising the study and word of mouth.

Users were provided with an LG Nexus 4 smartphone that features a 1.5 GHz homogenous

quad-core Snapdragon S4 CPU. This smartphone was chosen due to its number of cores and the

flexibility in managing them. We choose to use devices with higher number of cores in our In-the-

Wild study. Open source nature of the Android OS allows us to access lower level information

about the smartphone’s state in this device. The smartphone was loaded with seven open source

applications that were intended to represent the wide variety of applications used by smartphone

users. The selected applications are as follows:

• Animation: This application we designed includes a button that causes a box to animate up

and down across screen when pressed.

• Drawing: Markers [112] is an open source drawing application. It includes a pressure-

sensitive, multi-touch canvas to show drawings.

• Gaming: The Green Wall [97] is an interactive game where users fling fruits from the bottom

of the screen towards a wall.

• Imageswipe: Universal Image Loader [127] is an application for viewing pictures. It in-

cludes multiple ways to browse and display images. We used the viewpager mode in our

study, which allows users to swipe between full screen images.
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• Readability: This application allows us to test the users’ Relative Visual Performance [73].

Users are presented with a grid of E’s tumbled in up, down, left and right orientations, and

asked to click the E’s in the up and down orientation.

• Video: ExoPlayer [46] is a simple media player for Android. It provides an alternative to the

MediaPlayer, the Android framework default.

• Browsing: Lightning Web Browser [111] is a lightweight Internet browser application. We

chose to have users browse only Wikipedia pages since it is a familiar website for most users.

These applications were instrumented to extract user-facing metrics using Android’s logging

system, logcat. The extracted features are listed in Table 2.1. We chose features which give more

insights about the application and also give minimum overhead to logger application. Metrics, such

as frames per second and frame time, were collected for all applications to capture screen events

in the phone. Application-specific metrics were gathered in order to isolate different phases; such

as “click input lag” feature for animation application, “relative visual performance” for readability

application, “image load time” for imageswipe application etc. We should also note that, while

CPU utilization, frame metrics, number of threads and average current-voltage (to calculate power)

values were collected at 1 Hz, all other collected data was event derived.

For each user study session, users were first familiarized with the applications and the system.

During this period, standard governor (default scheme) was used for CPU management. Then,

users performed tasks in the seven applications discussed above that were given in randomized

order. Users were asked to first perform a specific task for 15 seconds, and then report their

subjective rating of the smartphone’s CPU performance on a whole-number scale from 1 to 5 (“1”

represents lowest and “5” represents highest satisfaction).

Performance of the smartphone was inferred from users’ perception of responsiveness, speed,

and smoothness. Each application’s task was performed twice for each of the randomly assigned

CPU configurations. The possible CPU configurations included one, two, or four active cores

operating at minimum, middle, maximum frequencies or governed by the standard (on-demand)
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governor. Using a wifi-enabled version of the Android Debug Bridge (adb) [13] made it possible

to remotely alter the CPU configuration between iterations of each task. Neither the users nor the

experimenter were made aware of the CPU configuration of the smartphone at any time during the

study. Users were asked to base their ratings solely on their subjective evaluation of the smart-

phone’s performance. The instrumented user facing metrics and information about the average

instantaneous power consumption were compiled for each task execution. We must note that the

cost of logging is negligible, never exceeding 5% additional CPU utilization during the tests.

2.2 Results and Discussion: In-The-Lab

In this section, I present our In-the-Lab experimental results. I first start by analyzing the corre-

lation between smartphone’s CPU performance and user satisfaction. Then, I analyze the power

consumption and user satisfaction for different CPU configurations. Finally, I explain our proposed

method on modeling user satisfaction using user-interfacing metrics.

Figure 2.1: (a) Average user satisfaction over all CPU configurations for a single user. (b) Average
user satisfaction over all CPU configurations for the gaming application.

2.2.1 Correlation Between Smartphone Performance and User Satisfaction

Currently, the CPU governor does not consider the differences among users’ performance pref-

erences when selecting a frequency. Instead, the CPU governor simply adjusts the frequency in

response to the workload (CPU load) placed on the smartphone and the impact of these appli-

cations on system metrics such as CPU utilization [146]. This approach implicitly assumes that
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maximizing the CPU performance of the smartphone is the most important task. However, not all

users require the same level of performance to reach a given level of satisfaction when using a spe-

cific application. In addition, the level of performance needed to reach a given level of satisfaction

varies among applications and users. If user satisfaction truly depends on more than just the level

of performance, then this is a missed opportunity to optimize the CPU configuration for power

consumption. The CPU governor could instead consider all factors that influence user satisfaction

when assigning an operating frequency to its cores. In order to test these claims, we analyze the

data collected from our user studies in two ways.

First, we plot the average ratings of each user’s satisfaction for all applications. For a given user,

there is a considerable variation in satisfaction across applications. Figure 2.1(a) shows this plot

for a single user whose average rating over all CPU configurations demonstrates a high sensitivity

to the selected application. We also observe that the standard deviation of users’ average ratings,

shown by the error bars, differ between applications. The same trend is observed for the majority

of users. However, when average satisfaction rating for all users is plotted for all applications, the

trend is less clear.

Second, we plot the average ratings of all users’ satisfactions for different applications. To

provide an example, Figure 2.1(b) shows the average ratings over all CPU configurations for the

gaming application. We see that there is a high variation in the average ratings across all users.

Additionally, the error bars show that the standard deviation of the average ratings varies between

users. This shows that different users are affected in different ways to changes in the CPU con-

figuration. In other words, while some users do not change their ratings drastically for different

configurations, some are very sensitive. This trend holds for the remaining six applications.

The smartphone’s average CPU performance remains constant because the same set of CPU

configurations is used for every application. If performance were the sole contributor to user

satisfaction for all users and applications, then both visualizations of the data would yield plots with

invariable average ratings. Therefore, it is apparent that user satisfaction is influenced by more than

just the performance of the smartphone. We can additionally conclude that these influencing factors
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affect each user differently. We explore other factors that potentially determine user satisfaction in

later sections.

Figure 2.2: (a) Average user satisfaction and average relative power consumption of all users for
the readability application. (b) Average user satisfaction and average relative power consumption
of all users for the video application.

Figure 2.3: (a) Average user satisfaction and average relative power consumption of all users for
the animation application. (b) Average user satisfaction and average relative power consumption
of all users for the gaming application.

2.2.2 Effect of CPU Configurations on Power Consumption and User Satisfaction

It is important to consider how CPU configurations influence a smartphone’s power consumption.

The power consumption of an application is a key factor in understanding its impact on the battery

life of the smartphone: applications with sustained periods of higher power consumption shortens

the battery life more. While it is difficult for users to perceive the instantaneous power consumption

of their smartphone, they will generally perceive its eventual impact on the battery life from the

total consumed energy. This indirect effect on a user’s satisfaction with their smartphone justifies
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the importance of power consumption as a metric of satisfaction. In fact, battery lifetime is one of

the important marketing tools for smartphones.

The optimal CPU arrangement will provide the highest satisfaction with the lowest power con-

sumption. In order to determine the optimal CPU configuration, we compare the average user

satisfaction rating across all users with average instantaneous power consumed during runtime

for each application. Since each application runtime is fixed and same, their energy consumption

comparisons are as same as power comparisons.

Figure 2.2 and 2.3 show graphical examples of the comparison of average relative power (the

power consumption for the single core configuration with the lowest frequency is taken as the base),

average satisfaction rating, and CPU configuration for four different applications. The labeling on

the x-axis indicates the CPU configuration.

The first number indicates the number of active cores, while the term afterwards indicates

the frequency of the active cores: maximum (max), medium (mid), minimum (min), and on- de-

mand governor (std). For example, while “2max” indicates that CPU operates with 2 active cores

each running at the maximum frequency; “4std” indicates 4 active cores running in (standard)

on-demand governor.

Y-axis shows the user rating (left) and power consumption (right). As seen in the figures, the

trends between these three factors (rating, CPU configuration, power consumption) are not always

constant across the applications. For each application, the frequency at which cores operate leads

to an intuitive ordering of power consumption: power consumptions of minimum frequency CPU

configurations are lower than the power consumptions of middle frequencies, which are lower than

the power consumptions of the maximum frequencies. The power consumption of the standard

governor is usually higher than the middle frequency and is always lower than maximum frequency.

However, the power consumption for CPU configurations with a different number of active

cores does not always follow a trend. Some applications, such as the animation application (de-

picted in Figure 2.3(a)), demonstrate that having additional cores, after having 2 cores, is not bene-

ficial from user satisfaction and power consumption perspectives. In fact, increasing the number of
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Figure 2.4: (a) Ratio of average user satisfaction and average user satisfaction squared to average
power consumption for the video application. (b) Ratio of average user satisfaction and average
user satisfaction squared to average power consumption for the imageswipe application.

cores leads to increased power consumption without any increase in user satisfaction. Therefore,

for these applications, the optimal CPU configuration is not the standard configuration; please note

that the standard configuration is 4 cores active using the standard governor, i.e., 4std. Conversely,

it is necessary for some applications to have more cores in order to achieve maximum user satis-

faction. Figure 2.2(b) Figure 2.3(b) shows that for the video and gaming applications, additional

cores lead to higher satisfaction relative to CPU configurations with fewer cores.

As shown in the Figure 2.2 and 2.3, there is a trend for higher user satisfaction with higher

core numbers and frequencies for some applications. This trend can be explained by two com-

plementary ways. Clearly, higher number of cores and frequencies provide better response times

and smoothness on the screen. Since in some applications these visual problems are easier to be

noticed (skipping frames in video application or delays in touch inputs in game application) users

may be more sensitive to them. But it is still not enough to explain large variation in the same

application in same configurations. Because even in the game application, which requires high

sensitivity to user inputs, it is obvious that, not all users are affected same from these problems

(depicted in Figure 2.1(b)). Thus, user’s personal preferences and expectations also play a vital

role on explaining large variations of user satisfaction reports on same CPU configurations.

To help visualize the power-satisfaction relation more clearly, we introduce plots that show the

ratio of user rating to power, as well as the ratio of user rating squared to power. Dividing the sat-

isfaction rating by the power consumption allows us to see the satisfaction provided per unit power
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consumption. This measure demonstrates the satisfaction efficiency of the CPU configuration with

respect to power consumption.

Using these metrics, we are able to distinguish CPU configurations that have high satisfaction

efficiency and high satisfaction rating through weighting this satisfaction efficiency by the rating.

The squared rating/power metric (similar to the Energy-Delay2 Product which puts more weight

on performance over energy) provides another way to succinctly represent the satisfaction rating

over power consumption of a particular CPU configuration. To illustrate this point, we plot these

two metrics for the video and imageswipe applications. Figure 2.4(a) shows the ratio of rating

(left -y axis) and the ratio of rating squared (right -y axis) to power consumption for the video

application. We see both metrics in the figure suggest that a CPU configuration of four cores oper-

ating at standard governor frequency is the optimal configuration for the video application. In fact,

this conclusion is corroborated by the original data visualization shown earlier in Figure 2.2(b).

However, although we determine that default CPU configuration is the optimal configuration for

the video application, this is not the case for all applications (i.e. imageswipe application shown in

Figure 2.4(b)).

Table 2.2: Optimal CPU Configurations by Applications

Application
Optimal CPU configuration

for all users for bottom 25 percent
Animation 1std 1std
Drawing 2std 2std
Gaming 4mid 4max

Imageswipe 2std 4mid
Readability 2mid 4mid

Video 4std 4std
Wikipedia 4std 4max

Table 2.2 (middle column) lists the optimal configurations for all applications. We discover that

the optimal CPU configuration is not the standard configuration for five of the seven applications

we test. We must note that the optimal configurations found by the rating per power and rating

squared per power were identical.

To further understand the relationship between user satisfaction, power consumption, and CPU
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configuration, for each application we isolate the executions that produce user satisfaction in the

bottom 25 percent of all executions. This allows us to study the preferences of the most unsat-

isfied users and compare it to the preferences of all users. Since the users in the top 75 percent

of executions are already satisfied with their smartphone’s performance, it may be important for

designers to optimize for the least satisfied users to increase average user performance satisfaction.

We then produced the same style of plots as used previously to determine which configuration the

most unsatisfied users preferred.

Table 2.2 (rightmost column) summarizes the results of the optimal CPU configuration for 25

percent least satisfying executions. Five of the seven applications required all four cores to be

active to reach the optimal operation for these “more demanding” users, which further motivates

the higher number of cores in these systems.

In fact, similar to previous work [25], we have observed low thread level parallelism (TLP). In

addition the utilization of all 4 cores were rare on the selected applications. Although more cores

are rarely utilized in general, they are necessary in the “bursty” computation periods. As a result,

they are required a) to achieve highest satisfaction in certain applications across most users and b)

to achieve highest satisfaction across many applications for “pickier” users.

When all executions are considered, the standard CPU configuration is the optimal configura-

tion for only the video and browsing applications.

The standard governor frequency (std) is optimal for five applications, and four cores are opti-

mal for three applications. There are four applications for which the optimal CPU configuration of

the bottom 25 percent of ratings differed from that of all users. The optimal CPU configurations

in these cases are one that included more cores or a higher operating frequency. Additionally, the

standard CPU configuration is the optimal configuration for only one of the seven applications for

the most unsatisfied users.

We have further analyzed our results for their statistical significance. Specifically, we ran t-

tests to see how user satisfaction and power consumption of the optimal configurations differ from

standard 4-core configuration (4std). In these tests, we considered 5 applications (animation, draw-
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ing, gaming, imageswipe, readability), which have an optimal CPU configuration that is not the

standard 4-core configuration (Table 2 middle column). Across all applications, we observed p

value as 0.912 for the hypothesis H-(satisfaction-optimal) > H-(satisfaction-4std), indicating that

the optimal configurations have a higher user satisfaction. We also observed p value as 1.000 for

hypothesis H-(power-optimal) < H-(power-4std), indicating that standard 4-core configuration’s

power consumption is higher than optimal configurations’. Thus, the configurations selected as

optimal indeed reduce power consumption and also increase user satisfaction on the selected ap-

plications.

Based on the overall results, more cores are necessary for smartphone CPU configurations since

they can lead to reduced power consumption and improved satisfaction for certain applications.

However, all cores do not need to be active at all times since this increases power consumption

without improving user satisfaction for some applications. Therefore, the default CPU configura-

tion is overprovisioned for some applications even for the pickiest users. Understanding when it is

necessary to run all cores could be very lucrative for smartphone CPU designers as it could lead

to a significant power reduction without compromising user satisfaction. Within this motivation

we discuss our methods on setting CPU configuration in the wild and show energy savings in real

workloads later in In-The-Wild study section.

These results underscore the fact that user’s performance satisfaction is tied to more than just

CPU configuration. If we wish to fully understand what influences user satisfaction, we should

consider alternative metrics.

2.2.3 Proposed System: Predicting User Satisfaction

In the previous section, we showed that user satisfaction varies across users and the frequency of

the CPU alone is not sufficient to determine it. To understand what influences user satisfaction,

we gauged how well the user facing metrics collected during the user studies correlate with the

subjective ratings. Therefore, we analyzed the accuracy of predicting user satisfaction (ratings)

within the given metrics. Specifically, we propose a system that takes the user-faced metrics (listed
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Table 2.3: Summary of Predictive Models

Application Selected Features Error
Animation mean fps, threads, stdev animation fps 9.12%
Drawing cpu util(0-3), mean frame time, max touch handler time, mean fps, 8.27%

mean touch handler time, stdev touch handler time
Gaming mean frame time, stdev fps, mean combined touch frametime 10.07%

Imageswipe cpu0 util, mean frame time, stdev fps, stdev drag frametime, mean fps, 9.35%
stdev image load time

Readability cpu0 util, mean fps, rvp, stop handler lag 11.60%
Video cpu1 util, max video frametime, mean video fps, video load time, 8.93%

mean video frametime,
Wikipedia cpu util(0-2), max frame time, mean fps, stdev fps 11.92%

Global (All applications) cpu0 util, cpu1 util, max frame time, mean fps, mean frame time, 12.77%
stdev fps, stdev frame time, threads

Application-Specific Model Average 9.90%

in Table 2.1) as input and predicts the ratings given by the user.

We built prediction models using the proposed system. As discussed in Section 2.2.1, user

ratings were collected on a whole-number scale from 1 to 5. In the models, the ratings were nor-

malized to have a mean of zero and a standard deviation of one. This normalization was applied to

standardize the satisfaction ratings among users. Using Weka-tool [136, 137], we first used a fea-

ture selection algorithm, “Correlation-based Feature Selection”, to filter metrics that are correlated

with one another. Then, using M5P tree algorithm in Weka-tool, we developed two types of predic-

tive models: an application-specific model using metrics collected for that application specifically

and a global model that uses metrics collected for all applications. We observed that M5P algo-

rithm gives the best accuracies among other supervised algorithms on predicting normalized user

ratings. Table 2.3 summarizes the features that were chosen by the feature selection algorithms,

and the average absolute user satisfaction prediction error for each model. The average error is cal-

culated by using a 10-fold cross-validation. Therefore, training and test data do not overlap. Note

that runtime overhead of M5P algorithm on the phone was insignificant (¡1%), indicating that such

a dynamic system is plausible to deploy. We measured the overhead by repeatedly comparing CPU

utilization of the phone with and without classifying the data.

We make several observations about the user satisfaction models. First, we notice that the

features selected for the application-specific models are quite intuitive. For example, the touch
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handler time is included in the drawing application model, and the video frame time and frames

per second were included in the video application model.

We also see that all the application-specific models have a lower average prediction error rate

than the global model. It appears that metrics that are specific to a certain phase of an application

(e.g., touch handlers, frame rate during a touch) are better indicators of user satisfaction than gen-

eral collected metrics. However, even the global model achieves low error rates, 12.8% across all

applications and users. Finally, metrics such as frames per second, frame time, and CPU utilization

are included as features for a majority of the models. It is worth noting that the models produced

by Weka are identical regardless of whether the user field was included as input in the analyzed

data set.

Next, we carried out our study Into the Wild to predict user performance satisfaction and man-

age phone CPU settings in order to save energy in real workloads.

2.3 Experimental Study: In-The-Wild

In this section, I explain our In-the-Wild study. In this study, we evaluate the proposed system

by working with real workloads in the hands of real users. We start by introducing our target

device. Then, we define the CPU configurations selected for the study. Further, we describe our

user independent and user dependent models. Finally, we explain our test setup in the wild.

2.3.1 Test Device

We used Huawei Google Nexus 6P smartphone that is powered by an octa-core Qualcomm Snap-

dragon 810 processor. This device has a heterogeneous big.LITTLE core (four 1.55 GHz Cortex-

A53 and four 2.0 GHz Cortex-A57) architecture [1]. Nexus 6P smartphone was specifically chosen

for our In-the-Wild tests because of the trend in the smartphone market for increased heterogeneous

core architectures (Huawei’s kirin 960, Samsung’s Exynos, Apple’s A11 etc.) [8]. The reason we

didn’t choose Snapdragons 820/821 architectures is because they have quad-core and not yet that

common in the market. The software in our test device is a rooted version of Android 8.0 (Oreo).
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Open-source Android platform enables us to collect most of the proposed user facing metrics and

rooted version enables us to alter CPU configuration programmatically.

Figure 2.5: (a) CPU utilizations for least 160 power consuming configurations represented as little
(gray bars) and big (black bars) core groups and (b) selected 7 configurations ordered based on
their power consumptions to be used during user tests.

2.3.2 Choosing CPU Configurations

We identify CPU configurations, which cause least power consumptions on a set of applications in

our test device. Our target smartphone has a heterogeneous octa-core architecture with four little

cores, each supporting 11 different frequencies: 384, 460.8, 600, 672, 768, 864, 960, 1248, 1344,

1478.4, 1555.2 (all in MHz); and four big cores, each supporting 15 different frequencies: 384,

460.8, 600, 672, 768, 864, 960,1248, 1344, 1440, 1536, 1632, 1728, 1824, 1958.4 (all in MHz).

Each core group (big and little) can be set to any number of active cores and frequencies available.

Hence, our CPU has 2774 possible active core/frequency combinations. In order to identify the

least power consuming combinations from this large set, we develop a power-logger application

and compare all CPU configurations under 3 different applications: game, video, and the animation

applications described in Section 2.2.

We started by activating only one little core running at minimum frequency (384MHz) and

tried all available frequencies by activating/deactivating one more core each time. We also set

the frequencies to on-demand governor (std), which allows standard governor to decide frequency

among all available frequencies. Since little cores and big cores are homogenous in their own

groups, in the test, combinations were arranged as group-wise. We also tested big-little core group
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combinations to see how activating cores from both groups effect power consumption on the tested

workloads.

We used Monkeyrunner in Android [98] to create same workloads and ran each configuration

by 3-min in three different applications: gaming, video, and animation (described in Section 2.2,

in In-the-Lab tests). Since all configurations were tested with same amount of time, their energy

consumptions showed the same order with their power consumptions. In Figure 2.5(a), x-axis

represents the least power consuming 160 configurations and y-axis shows the CPU utilizations of

big and little core groups (gray color is for little cores and black is for big cores) (left) and power

consumptions in mW (right). Our results show that, as expected, power consumption decreases

when CPU utilizes little cores more, even the utilization goes to highest levels. By sorting all

configurations based on their power consumptions, we make the following observations on big and

little core groups:

• When cores are activated from both groups, not surprisingly, CPU tends to use only little

cores. CPU uses big cores either when there is no little core, or active little cores have high

utilizations ( 60+%). This is also one of the main principles of heterogeneous multicore

architecture [126].

• Least power consumptions occur when CPU is provided with one or two little cores with

minimum frequencies. But having only one active core causes skipped frames and delays in

handling touch events on tested workloads.

• When compared in equal conditions (only active cores are from one group in same count and

same frequency), big cores cause more power consumption than little cores.

• Increasing frequency increases power consumption considerably for each core group. On-

demand governor’s frequency consumes less power than maximum frequency as we also

observed in our In-the-Lab study.

By looking at these constraints, we define our 7 optimal CPU configurations (to be used In

the Wild tests) as follows: 2 or 4 active little cores only with minimum (384MHz), medium
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(960MHz), and on- demand governor frequencies (6 configurations); and all cores activated with

the on-demand governor frequency (default scheme). In other words, we try to use little cores as

much as possible in our configurations and activate the big cores by switching to default scheme if

only they are needed to maintain user satisfaction.

Figure 2.5(b) depicts the selected configurations in ascending order (from bottom to top) based

on their power consumptions. For each configuration, first digit indicates active little core number,

second digit indicates active big core number, and third term is the frequency. Thus, for example,

20min means only two active little cores operating at minimum frequency and 44std means all

eight cores are active managed by the standard governor.

Figure 2.6: (a) GUI on the phone to collect 2-level (unhappy and very unhappy) user reports about
phone’s CPU performance and (b) collected user facing metrics in in-the-wild studies.

2.3.3 Logger Application

For our in the wild tests, we have developed a logger application. The logger application predicts

user satisfaction from collected data and sets least power consuming CPU configurations (de-

scribed in previous section) in the wild. The application is developed as a regular ART (Android

Runtime) executable using the Java standard libraries available in the Android framework. There-

fore, it can be used in any rooted Android smartphone. At a high-level, the application consists of

two parts: (1) a GUI part (2) and a background service part:

• The GUI part: When application starts in the phone, a notification is shown on the upper

bar of the phone screen to get instant user satisfaction input in 3 levels: 2-happy (default),
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1-unhappy and 0-very unhappy, in the wild (Figure 2.6(a)). We placed the notification on the

upper bar to enable users (by swiping down) an easy access to evaluate whenever they feel

dissatisfaction from the phone’s performance.

• Background service: The background service implements four main tasks: 1) logging user-

facing metrics and system statistics shown in Figure 2.6(b), 2) building prediction model

from collected user data, 3) predicting current user satisfaction, and 4) setting optimal CPU

configuration in real-time. To prevent perturbation, logging occurs in every 2 seconds, pre-

dicting the satisfaction and setting CPU configuration occurs in every 10 seconds. Also, the

service periodically looks for a network connection and sends the logs back to our server. We

observe that our logger increases the CPU utilization less than 1% and adds less than 80 mW

additional power consumption on average. In case our background service was implemented

in kernel space instead, its overhead to the system would be even smaller.

Figure 2.6(b) shows the collected user facing metrics and system statistics by our logger ap-

plication. We collected the same metrics we used in the global (application-agnostic) model in

Section 2.3.3. This enables us to evaluate global model features in real workloads. We must note

that, these metrics are easily accessible in system level programmatically without any additional

software or hardware support.

Figure 2.7: Flow of predicting user satisfaction and setting optimal CPU configuration in the test
device in real-time.

2.3.4 Predicting User’s Satisfaction In the Wild

Figure 2.7 shows the flow for predicting user satisfaction dynamically in the wild. As explained

in Section 2.3.3, we utilized user-facing metrics to predict user satisfaction in real-time. We built
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two different models to see how collected data from multiple users differ from personal data on

predictions:

• User-independent model: We built user-independent model from 5 users’ (different from

In-the-Wild test users) cumulative data as offline and loaded to the test device beforehand.

As workloads we chose 4 different applications (two game applications, one video applica-

tion, and browser application). Users interacted with each application for one-hour duration.

During these interactions, CPU configurations were altered randomly among optimal con-

figurations described in Section 2.4.2. Users pushed the dissatisfaction buttons (unhappy or

very unhappy) from the GUI of the logger application whenever they felt so. Along with the

user reports, our logger application constantly logged the data shown in the table in Figure

2.6(b). Again we used M5P tree algorithm from Weka Machine Learning [137] tool to create

the user independent model offline. Similar to Section 2.3.3, we observed that M5P algo-

rithm gives the best accuracy in predicting the satisfaction (on average ¡8% absolute relative

error).

• User-dependent models: User-dependent models were created online during the experi-

ment for each user. Before starting the experiment, each user was first familiarized with the

test phone for an hour. During this period, CPU was set to defined optimal configurations

(described in Section 4.2.) randomly. In this pre-test period users were trained to use no-

tification bar and logger application GUI to report their dissatisfaction whenever they felt

so. Similarly, along with the user reports, our logger application constantly logged the data

shown in the table in Figure 2.6(b). Throughout the In-the-Wild experiments user-dependent

models were re-created from current accumulated user data dynamically. For user dependent

models, first kMeans Clustering in Weka Java Libraries was used to cluster all collected user

data. kMeans Clustering was used to group and identify configurations that cause dissat-

isfaction for each user. We found kMeans clustering especially helpful in situations where

user does not provide enough dissatisfaction indication and the data look more sparse. Then

again M5P tree algorithm in Weka Java Libraries was used to create user-dependent model
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in the wild.

During the one-week In-the-Wild experiments, users test either one of these two user models

or default scheme each day in a random order. Every time user-dependent model is chosen, a new

user-dependent model is built from all the collected data. Therefore, unlike the user independent

model, which was fixed during the experiment, user-dependent models were rebuilt dynamically

using the current accumulated user data.

2.3.5 Setting CPU Configuration In the Wild

For both user- models (user independent and user dependent), in every 10 seconds, current user

satisfaction is predicted from the given user facing metrics. Then CPU configuration was set

dynamically in the wild. Figure 2.7 also visualizes the flow of CPU configuration setting process

in real-time.

Users report their satisfactions in three levels: 2 (default-happy), 1 (unhappy), and 0 (very

unhappy). Therefore, the user satisfaction predictions of the models also range between 0 and 2.

If the predicted satisfaction is less than 1.25, that means user may be dissatisfied with the current

CPU configuration and our algorithm increases either the active core count or frequency. If the

satisfaction is higher than 1.75, that means user is already satisfied with the configuration and our

algorithm does the opposite in order to save energy. In other words, our algorithm tries to keep the

satisfaction high, always more than 1.25 and typically around 1.75.

We determined the upper (1.75) and lower (1.25) bounds by conducting experiments with sev-

eral levels in our lab. It is possible that other levels may be preferable by different developers.

These levels could also be changed to make our system more (or less) aggressive. However, we

found these bounds to work well in general.

In Figure 2.7, we also show the CPU configurations that are set based on the predictions. As

shown in Figure 2.5(b) the configurations are ordered by their power consumptions. Thus, transi-

tions between them are also done in the same order shown in the figures. Predicting satisfaction

and setting CPU configuration programmatically in real-time also presented in pseudo-code 1.
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Algorithm 1 Pseudo code for predicting user satisfaction and setting
CPU configuration programmatically in real time.

1: procedure LOGGER-AND-CPU-SETTER

2: Make calls to classes to user facing metrics and system statistics

3: predict-satisfaction-and-set-CPU()

4: post handler for 10 seconds

5: function PREDICT-SATISFACTION-AND-SET-CPU()

6: if current model is user-independent model then

7: user satisfaction = get user-independent model prediction

8: else if current model is user’s user-dependent model then

9: user satisfaction = get user’s model prediction

10: if user-satisfaction > 1.75 then

11: decrease-core-count-frequency()

12: else if user-satisfaction < 1.25 then

13: increase-core-count-frequency()

14: function DECREASE-CORE-COUNT-FREQUENCY()

15: if current CPU is 44std then

16: set CPU to 40std

17: else if current CPU is 40std then

18: set CPU to 40mid

...

19: function INCREASE-CORE-COUNT-FREQUENCY()

20: if current CPU is 20min then

21: set CPU to 20mid

22: else if current CPU is 20mid then

23: set CPU to 20std

...
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Figure 2.8: An example random model selection for a user during the one-week long In-the-Wild
experiment.

2.3.6 Test Setup

We tested the two models and the default scheme on 20 smartphone owners for one-week duration

each. The majority of participants were young professionals and all participants were under the

age of 50. Participants were gathered through fliers advertising the study and word of mouth.

Each user, before starting the one-week experiment, was introduced to the phone for an hour by

using varying applications. Test phone starts collecting data from this pre-test period, until end of

the experiment (one-week) for each user. Therefore, we collected total 140 days of data. During

the experiment, users used the given phones as their primary phones by inserting their sim cards

and installing/using applications they typically use. Users tested one model each day (the order

of models were randomized). Since the experiment takes 1 week, we made sure that all users

test the two models and default scheme exactly twice. Figure 2.8 visualizes a random model

selection for a user. In the analysis, we ignored the first day as it may create artificially high energy

consumption for the chosen model assuming that users will install their favored applications during

the day. Throughout the experiment, users pushed dissatisfied buttons placed on the GUI of the

phone whenever they felt so. These on-the-fly user reports were then used on building new user-

dependent models in the wild.

Additionally, through a popup questioner, we asked users’ daily overall satisfactions of the

phone’s CPU performance and its battery management three different times in each day to ana-

lyze models’ performances on daily usage. In the questioner, users answered the question “How

was your phone’s CPU performance and battery management today?” from a 5-scale radio style

selection: 1 is worst, 5 is best.
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2.4 Results and Discussion: In-The-Wild

In this section, I present the results of our In-the-Wild study. I first discuss results of the power

consumption and user satisfactions of our 20 users. Then I explain our Amazon Mechanical Turk

study, where we compare default scheme to static model in a bigger crowd and analyze their

differences in user satisfaction.

Figure 2.9: (a) Average daily power consumptions in mW and (b) average of daily reported satis-
faction levels of each model for 20 users.

2.4.1 Power Consumption and User Satisfactions

Figure 2.9 shows power consumptions and daily overall user satisfaction averages of the default

scheme and two tested models (user independent and user dependent) for our 20 users. In the

figure, y-axes represent consumed average power in mW (a) and average user satisfactions from

daily user reports ranging from 1 to 5 (b); x-axis shows our 20 users and their averages at the end.

Since each user’s workload and usage pattern are different, we see a large variation across

users’ power consumptions and satisfactions. Nevertheless, in most cases, user independent and

user dependent models consume considerably less power than default scheme while users’ satis-

factions look similar. When compared to default scheme, we see up to 30.2% power saving using

the user independent model (user 15) and up to 26.2% saving with the user dependent model (user

13). We see only 4 users have higher power consumption with either one of the user models than

default scheme. On average, with user independent and user dependent models, we see 12.3%
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and 11.8% system level power savings, respectively. We must note that, since each user used the

phone same amount of time, we observe similar active CPU times for each day (thus for each

model). Therefore, we detect their energy consumptions comparisons are same as their power

consumptions’.

Although our algorithm always tries to select the least power consuming configurations in the

given order in Section 4.4, we must note that the user independent model spends 27.7% its time in

the 44std configuration (default scheme – 8 cores are active running in standard governor) across

our 20 users, while this ratio is 35.5% for the user dependent models. In other words, our algorithm

frequently set CPU to the default scheme to meet the current user satisfaction. Thus, higher core

counts are necessary to maintain user satisfaction on some users and certain applications. This

result also matches the same conclusion we had from the In-the-Lab study regarding the need for

a high number of cores to maintain user satisfaction for some applications.

We also observe that, while user independent model provides higher power savings, on aver-

age, it also causes least satisfaction when compared to other models. Users are more “satisfied”

with their own personalized models than the user independent model. However, the average user

satisfactions do not vary significantly across the three models. Default scheme, user independent,

and user dependent models have mean values of 4.57, 4.32, and 4.42 and standard deviations of

0.51, 0.69, and 0.59, respectively. To see the differences between these 3 different models, we per-

form pair-wise t-test and an equivalence test for our 20 users’ satisfaction values. In t-tests, we see

p-values as 0.20 and 0.39 for user independent model- default scheme and user dependent model -

default scheme comparisons respectively. Since the p-values are higher than the significance level

(0.05), the analysis concludes that the means do not differ. Using the equivalence test on the same

data, we see p-values as 2.2e-04 and 1.17e-05 for user independent and user dependent models

comparisons respectively, which indicates that there is sufficient evidence to claim that the means

are similar enough.
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2.4.2 Further Analysis on In-the-Wild Study

Limitations of application dependent models. As discussed in Section 2.4.4, for in-the-wild

study, we build two models to predict satisfaction: a fixed user independent model and a dynamic

user dependent model. We built both models as application-agnostic for two reasons. First, con-

sidering the (growing) volume of applications in the market and user selection variety on them, it

is not feasible to develop a prediction model using a fixed or dynamic application list. Second,

(depending on the sampling frequency) keeping track of the applications’ usages along with the

time they spend in CPU is quite costly in terms of overhead and memory in application level.

Therefore the proposed system is application independent. However, for analysis purposes, we

have collected application names and the time they spent in CPU via our logger application. We

set sampling frequency to 5 min and limit application count to maximum 20 in order to keep logger

overhead minimum. Specifically we were interested on the number of CPU-intense applications

used by per user since they may be more influential on user’s rating decision. While there is a large

variation in application selections, we observe a maximum of six and a minimum of two CPU-

intensive applications are used by each user. We consider applications that utilize the CPU more

that 20% as CPU-intense. We also observe that, in active usage, average CPU utilization ranges

between 2% and 100%, with an average utilization of 42% (user-dependent and user-independent

models’ utilizations are 43% and 45%, respectively, while the average utilization for the default

model is 38%). These results show that even though some applications may use components like

accelerators or GPU more and lower CPU utilization, the average CPU usage is still high. More-

over, we observe bursts in CPU utilizations. Since the overall utilization is not low, we see that

a) the default scheme uses higher than necessary frequencies and b) lowering the frequency has a

significant impact on the overall power consumption.

Users’ satisfaction evaluations on tested models. Figure 2.9(b) shows average user satisfac-

tions from daily user reports for each user. In addition to evaluations in Section 2.5.1, it is also

possible to analyze user ratings individually. Specifically, instead of taking averages of all user

reports, we were interested in the individuals who are “unsatisfied” with the proposed system. We



www.manaraa.com

48

observe that while 17 users rated either user independent or user dependent model as better than

or equal to default model, only 3 users rated default model as the best. Since proposed system is

implemented as a software mechanism, it can be optional to users and can be turned on/off based

on users’ selection (i.e., it can be deactivated for the 3 users). Additionally, in order to improve

battery life in case of emergencies, these models can be made an option for different power saving

modes on the smartphones.

Figure 2.10: (a) AWS Mechanical Turk users’ satisfaction distribution from 1 to 5 in three videos.
(b) Statistical difference comparisons of three tested models.

2.4.3 Mechanical Turk Study

We conducted a further study to compare the user independent model and default scheme on a

bigger crowd, using the Amazon Web Services (AWS) Mechanical Turk (mTurk) [115]. In mTurk

study, we observe 110 users’ evaluation on the phone’s CPU performance under these two models.

User-dependent models were not considered since they are personal for our 20 In-The-Wild users.

In order to compare the models, we recorded a CPU-intense car race [20] gameplay videos on

our test device and made the mTurk users watch these gameplays and rank their satisfaction (from

1 to 5: 1 is the worst, 5 is the best) based on the smoothness and frame skipping on the video.

We recorded one video with phone CPU is managed by the default scheme, and two more videos

while it is managed by user independent model. Our first video in the user independent model
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was the first-time the application was started and the second one was after the first 1 minute of

playing. The reason for recording in these two different times is because for the user independent

model, it may take some time to set the CPU in desired configuration, and this duration may create

dissatisfaction for the users. Hence, we decided to test these time states separately.

MTurk users watched the three videos (gameplays where CPU is managed by default scheme

or user-independent models) in a random order. Figure 2.10(a) shows satisfaction distributions of

mTurk users with the default scheme, user-independent model first and user-independent model

second videos. X-axis shows the ratings (1 to 5) while the y-axis shows the ratios of reported

satisfactions. Their means and standard deviations are 3.98, 3.77, 3.89 and 0.96, 1.02, 0.80, re-

spectively. The default scheme and second user independent model seem to have similar ratings,

while the first user independent model seems to have a slightly lower rating. To understand the

statistical differences of these three group ratings, we performed t-test and equivalence tests as

described in the previous section (Section 5.1). Table in Figure 2.10(b) shows the results that all

three groups have similar means, while the difference between the default and the second user

independent model is hardly distinguishable. As a result, we can claim that there may be slight

changes in user satisfaction at first, but once the model settles the differences between the models

becomes indistinguishable. Therefore, the proposed system does not cause a significant decrease

in user satisfaction, but reduces the energy consumption considerably.

2.5 Summary

In this project, we study CPU management on mobile systems with respect to end user experience

by conducting two experimental studies with real users. We define them as In-the-Lab and In-the-

Wild experiments.

In-the-Lab, we showed that for some applications, a CPU configuration with more cores led to

increased power consumption without increasing satisfaction. For others, it was necessary to have

more cores in order to achieve maximum satisfaction. By observing the high correlation between

collected data and user satisfaction reports, we propose a system to save energy by altering CPU
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core count and frequency while keeping users satisfied.

We evaluate the proposed system in-the-wild by building two prediction models: a user-independent

(user-oblivious) and user-dependent (personal). Our users test the two models and the default

scheme for one-week duration, which composes 140 days of worth of data. When compared to

default scheme, our results show that, without impacting satisfaction, user-independent and user-

dependent models save 12.3% and 11.8% of total system energy on average, respectively.
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CHAPTER 3

USING BUILT-IN SENSORS TO PREDICT USER SATISFACTION FOR CPU

SETTINGS

Smartphones have already become an essential part of everyday life. Today, there are more than

2.5 billion active smartphone users in the world [122]. The increasing dependency on smartphones

also brought demand for more capability and performance. To accommodate these increasing

demands, smartphones have constantly improved and adopted new hardware features.

One of these features is high performance mobile CPUs. In order to increase the computational

performance, mobile CPUs have been improved steadily over the years. They first evolved by

increasing the CPU clock frequency to enhance the performance. When this approach faced the

peak frequency limit barrier due to heat and exponential increase of power consumption, mobile

CPUs have shifted to multi-core architectures [33, 142]. In recent years, smartphones have finally

adopted core asymmetry as “big” performance-optimized cores, and “LITTLE” energy-optimized

cores to improve the power efficiency and achieve higher performance levels [33].

Sensor technology on mobile devices is another feature that has also evolved over the years.

Less than a decade ago, smartphones had only a few sensors; today they have more than a dozen

sensors with additional capabilities and lower power consumption levels [106]. The evolution of

sensors also brought various capabilities to mobile devices. For example, smartphones and smart-

watches can recognize complex human activities and gestures, detect users’ stress levels or emo-

tional states, predict pin numbers and more. Despite the wide usage of multicore smartphones in

the market, how much these cores impact end user experience still remains unclear. Since current

operation systems manage DVFS (dynamic voltage-frequency scaling) based on the CPU utiliza-

tion (CPUload), end users’ satisfaction is (largely) ignored. However, prior work shows that user

satisfaction on multicore smartphone varies between different CPU configurations [62]. Not all

users are effected same from the CPU core/frequency changes even in the same workloads. Ad-
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ditionally, there are still complaints on off-the-shelf phone performances in practice among users

[150]. Therefore, there is a need to understand the users’ performance satisfactions with their

smartphones in order to manage computational resources on the phone. If users’ performance sat-

isfaction is known, we can manage mobile CPU settings in a much more efficient manner; we can

reduce the power consumption if doing so does not cause dissatisfaction or increase performance

when necessary. The challenge to achieve this is to be able to predict satisfaction accurately in real

time.

In this project, we propose a system that utilizes motion sensor data, audio records, and touch

events gathered from a smartphone and a smartwatch to predict user satisfaction and alter CPU

configurations in the phone in order to save energy. The aim of the system is to maintain user

satisfaction, while minimizing power consumption on smartphones. We evaluate our system by

conduction two IRB approved user studies with a total of 30 users. In both studies, users were pro-

vided with a heterogeneous octa-core smartphone and a smartwatch. In the first study, we create a

user-independent model and user-dependent models from users’ workloads on seven common ap-

plications. In the second study, we make users operate the phone with the applications they choose

to use while the user-independent model, their user-dependent models, or the default scheme con-

trols the CPU. Our results show that, without impacting user satisfaction, user-dependent models

and the user-independent model save on average 10.12% and 8.96% total system energy, respec-

tively when compared to the default scheme.

Moreover, we study the relation between the sensor data, user satisfaction, and CPU con-

figuration in more detail. We show that collected sensor data is strongly correlated with users’

satisfaction. We also discuss the possible reasons behind the correlation of sensor data and user

satisfaction.

Overall our contributions can be listed as below:

• We show that, user satisfaction can be predicted accurately using the sensor data gathered

from both smartphone and smartwatch devices or from smartphone alone.

• We develop lightweight tools and methods to model user satisfaction using sensors from two
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mobile platforms and alter CPU core/frequency based on these predictions in order to save

energy in real time.

• We demonstrate that there is a strong correlation with CPU configuration, user satisfaction

and collected sensor data.

The rest of the chapter is structured as follows. I introduce our test devices and logger ap-

plication in Section 3.1. In Section 3.2, I describe our user tests and models. In Section 3.3, I

explain our results. I present the analysis on the correlation of sensor data, user satisfaction, and

CPU configurations in Section 3.4. I discuss on three important aspect of the proposed system in

Section 3.5.

3.1 Methodology

In this section, I discuss our user study methodology. I first introduce the devices used during the

studies. Then, I explain how we select the tested CPU configurations. Finally, I discuss our logger

application along with utilized sensors.

3.1.1 Test Devices

We use a Huawei Nexus 6p smartphone and an LG Urbane 2 smartwatch in our user tests. The

smartphone is powered by an octa-core Qualcomm Snapdragon 810 processor. This device has a

heterogeneous big.LITTLE core (four 1.55 GHz Cortex-A53 and four 2.0 GHz Cortex-A57 cores)

[1]. Nexus 6P smartphone was specifically chosen for our tests because of the trend in the smart-

phone market for increased heterogeneous core architectures [8]. Since Qualcomm Snapdragon

820/821 have quad core architectures, we chose Snapdragon 810 to cover a wider range of smart-

phones in the market (i.e. Huawei’s kirin 960, Samsung’s Exynos, Apple’s A11, etc.). The software

in our test device is a rooted version of Android 7.1 (Nougat). Open source Android platform en-

abled us to collect sensor data and rooted version enabled us to alter CPU configuration. We use

LG Watch Urbane 2 as our smartwatch since its one of the most popular watch brands/models in
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the market [121]. The software on the smartwatch is the open-source Android Wear platform (An-

droid Wear 2.0) [52], and a general framework of C, C++, and Java code. The framework includes

the Android Runtime Environment (ART), a variant of Java implemented by Google.

3.1.2 Choosing CPU Configurations

As I described in Section 2.3.2, we identified the least power consuming configurations by test-

ing all possible CPU configurations. Thus similar to Section 2.3.2 we choose six configurations

that only use little cores: 2 or 4 active little cores with their frequencies fixed at either minimum

(384MHz) or medium (960MHz) or determined by the on-demand governor. These six configu-

rations span the power spectrum in Figure 1(a). In addition, we allow our system to choose the

default configuration (all cores activated with on-demand governor frequency). Overall, we utilize

little cores as much as possible and activate the big cores by switching to default scheme if they

are needed to maintain user satisfaction.

Figure 3.1: (a) GUI on the phone to collect 2-level (unhappy and very unhappy) user reports
about phone’s performance and (b) logger application’s data collection from both smartphone and
smartwatch devices.

3.1.3 Logger Application and Sensors

We develop a sensor-logger application to collect sensor data from both test devices. The appli-

cation generates two apks (phone and wear) that can be installed to both devices independently.

Additionally, if these two devices are connected to each other through Android Wear application

[16] (Google’s default application to establish and maintain connection between smartphones and
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Table 3.1: Collected sensors and features for our models. “P” indicates that the corresponding
sensor/feature was collected from the phone and “W” indicates that corresponding sensor/feature
was collected from the watch.

Sensor/Feature Explanation

Accelerometer (P, W) We collect acceleration force along the x, y and z axis in 5Hz sampling rate.
Gyroscope (P , W) We collect rate of rotation around the x, y and z axis in 5Hz sampling rate.

We collect touch events from smartphone using logcat [10]. Events include
Touch events (P) touch times, touch sizes in max, min and avg. and touch x-y coordinates in

2D phone screen. Data collection occurs by user inputs.
Microphone- Audio (P) We collect ambient audio amplitude (in decibel) in raw, max, min and avg.

values in 2Hz sampling rate using the microphone.
Heart Rate (W) We collected heart rate (beat per minute) data in 1Hz sampling rate.

smartwatches using Bluetooth), once the application is installed to one of the devices, it automati-

cally syncs and pushes its connected device’s apk from one to another to be installed.

The logger is developed as a normal Android Runtime (ART) executable using the Java stan-

dard libraries available in the Android and Android Wear frameworks. Thus, it runs on all Android

smartphones and Android Wear smartwatch devices without any special hardware or OS support.

At a high-level, the logger application consists of two parts: (1) a GUI, which creates a notification

on the upper bar on the screen and looks like a normal smartphone application and (2) an associated

background service to provide logging functionality.

• The GUI application: GUI application is designed only for the smartphone. When opened by

the user, the GUI begins the background services in both smartphone and connected smart-

watch. When it is stopped, along with its own service, it also stops smartwatch’s background

service. This control over smartwatch helps us to synchronize the data collection from these

two independent devices. GUI application also pops a notification on the upper bar of the

phone’s screen. This notification always stays on the screen to gather current user satisfac-

tion reports about the phone’s performance in 3 levels. We made this notification to enable

an easy access for user inputs. Figure 3.1(a) shows the notification bar when swiped down.

In the figure, faces correspond to states as unhappy (above) and very unhappy (below). We

log them as user satisfactions in 3-level: 0 very unhappy, 1 unhappy, and 2 (default) happy
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in numeric values.

• Background Service: Background service is the main part of the application. It is developed

to handle functions such as data collection and setting CPU configuration in the test devices.

In the smartwatch, background service is responsible for collecting sensor data and sending

it to the phone every 5 seconds. In the smartphone, background service is responsible for 1)

collecting sensor data and receiving smartwatch data, 2) predicting current user satisfaction

using the developed models, and 3) altering CPU configurations to reduce power consump-

tion while maintaining user satisfaction. Figure 3.1(b) explains the data collection from

background services for both devices. The data is accumulated as log files in the phone. To

sync watch’s data with phone’s data in the log files, we also put time stamps on both de-

vices. We observe that our background services are lightweight mainly because of the small

frequency of data collection. We observe that logger application increases CPU utilization

by no more than 3% on both devices. Additionally, activating the logger increases energy

consumption by 2.8% on the phone and 9.2% on the watch on average. We measured the

overhead of the framework by using the experimental setup described in Section 2.3.2 (using

Monkeyrunner-tool on three different applications).

Android smartphones have built-in sensors that measure motion, orientation, and various en-

vironmental conditions. These sensors are capable of providing raw data with high precision and

accuracy, and are useful in many situations (e.g., monitoring three-dimensional device movement

or positioning). In our proposed system, to be able to predict user satisfaction in real time, we

collect data from various sensors. Table 3.1 lists the selected sensors/features and sampling rates

used for our models (we describe the reasons behind this selection in Section 3.4). As shown in

the table, we collect motion sensor, audio records and touch events from the target smartphone.

Smartwatches are sensor-enabled technologies for mostly health and fitness purposes. Since

smartwatches are worn and embedded to arm, they may provide higher quality data on capturing

some user behaviors compared to smartphones. Intuitively, it is possible that a user can hold the

phone still while moving the arm with the watch based on her/his emotional state (e.g., boredom).
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Table 3.2: Seven most common applications used in the lab to develop prediction models.

Application Task

Google Chrome Users search for news, games, and weather.
Game A CPU intensive car race game is played [28].
Video A preloaded video is watched from SdCard through

built-in Media application on the phone.
YouTube Users search and watch a video.

Google Maps Users search cities from different continents and
zoom-in/zoom-out.

Facebook Users check their news feed.
Instagram Users check their home/search tab.

Moreover, prior work shows that heart rate is a good indicator for detecting high/low arousal situ-

ations [44]. Therefore, in order to see the smartwatch sensors’ effect on detecting users’ behaviors

based on their satisfaction levels, we use the target watch’s motion and heart rate sensors in our

study. We found these features give more insight about users’ current satisfaction. We explore

each feature and the correlation of sensor data and user satisfaction in Section 3.4. Additionally,

we collect current and voltage values at 2Hz sampling rate to calculate power consumption on the

smartphone.

3.2 Experimental Study

In this section, I discuss the user studies we perform. We create user-independent and user-

dependent models in the first user study and then test them in the second one. The purpose of

these experiments is 1) to help us understand the impact of the number of cores of a smartphone

on user satisfaction, 2) to analyze how user satisfaction correlates with the collected sensor data,

and 3) to examine how user-independent and user-dependent models differ from each other and

the default scheme in terms of user satisfaction and power consumption.

3.2.1 First User Study: Building User-independent and User-dependent Models

We first conduct user tests with 30 real users in order to develop a user-independent and user-

dependent models. All the users were state-of-art smartphone owners and were under 50 years old.
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Participants are gathered through fliers advertising the study and word of mouth (i.e., snowball

sampling) and were provided gift cards with an amount of $10 for their participation. Users are

provided with the test devices (a Nexus 6p smartphone and an LG Urbane 2 smartwatch) described

in Section 3.1.2. Before starting the experiment, users are first familiarized with the devices for 10

minutes. In this introduction state, we make users login to their Google, Facebook, and Instagram

accounts to be used during the test. For the users, who do not have these accounts, we create

one at the moment. Then, each user performs seven predefined tasks (we choose the seven most

commonly used applications [99]) in random order. Table 3.2 shows selected applications and the

performed tasks. Since most of the applications require Internet connection, we conduct tests in a

high speed WiFi environment with a minimum speed of 24.27Mbps.

User test begins when sensor-logger application is started by opening its GUI on the smart-

phone. While users are performing the tasks, sensor-logger application collects the sensor data

shown in Table 3.1 and sets the CPU to one of the seven selected configurations (described in Sec-

tion 3.1.3 and depicted in Figure 3.1 (b)) in random order. Hence, users do not know about the data

collection or core/frequency changes on the phone. We make users experience each configuration

for 1-minute duration for each application. Hence, a typical user test takes less than an hour (about

50-55 minutes with the introduction at the beginning). We specifically keep the experiment under

an hour to keep users’ attention on the tasks. Users are asked to use the notification bar to report

their dissatisfaction whenever they felt so during the experiment. This process is also practiced

during the introduction state. We use these reports to label collected data as 0, 1, or 2. Therefore

all collected data along with the current CPU configuration is labeled as either 0,1 or 2 based on the

inputs provided from users. We then use these labels (inputs) to form supervised learning models.

After collecting 30 users’ data, we first create a user-independent model by accumulating first

10 users’ data. For the remaining 20 users, we create user-dependent models for each of them from

their own data. These last 20 users participate in our second user study later, where they com-

pare their own user-dependent models, the user-independent model (note that the user-independent

model was created using the first 10 users, hence it does not contain any information from this
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Figure 3.2: (a) Absolute mean error rates of 20 user-dependent models, user-independent model
(G), and their averages (Avg). (b) Average of True Positive, False Positive and Precision of 3-
level satisfaction reports (0-very unhappy, 1-unhappy and 2-happy) for both user-dependent and
user-independent models.

second study group), and the default scheme. We found that REPTree algorithm in Weka-machine-

learning-tool [139] provides highest accuracy with small overhead on the predictions of both user-

independent and user-dependent models. We use 10-fold cross validation to prevent training and

testing data overlap. Figure 3.2(a) shows the mean absolute error rates of the user-independent

and 20 user-dependent models in ascending order. As shown in the figure, there is a large variation

on accuracies of the user-dependent models. For some users, collected sensors can predict user’s

satisfaction of the phone with higher accuracy than others. This variation could be explained in

two ways. First, not all users are affected the same from changes in the CPU; some users are more

erratic than others. Also, different types of sensors on mobile devices may provide different levels

of insight into users’ satisfaction. As a matter of fact, we observe a similar variation when we

match user reports with the configurations. Even for the same configuration in the same workload,

user reports show differences. Nevertheless, with the selected sensors, we can still accurately pre-

dict user satisfaction. As shown in the Figure 3.2(a), majority of the error rates are less than 10%:

8.6% on average for the user-dependent models and 7.9% for the user-independent model.
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Table 3.3: Mean absolute error rates of the user-independent model with different user groups.

Training/Testing Group 1/2+3 2/1+3 3/1+2 1+2/3 1+3/2 2+3/1

Mean Absolute Error 8.743% 8.850% 7.851% 9.881% 8.968% 9.246%

We also extract true and false positive rates of satisfaction predictions for both user-dependent

and user-independent models. Since we can classify satisfactions to set CPU configurations in-

stead of absolute predictions, false positive rates provide a better view of how accurate we can

set the CPU core/frequency to keep satisfaction high. In order to classify satisfactions, we con-

vert our 3-level satisfaction numeric values to nominal values as “zero”, “one” and “two”. Using

Weka-tool with REPTree algorithm we measure the confusion matrix. Table in Figure 3.2(b)

shows the false positive, true positive and precisions of satisfaction classification averages of all

user-dependent models and the user-independent model. As shown in the table, although average

of user-dependent models’ precisions are slightly better than the user-independent model, both

models can still accurately classify user’s satisfaction in 3-level. Due to lack of space, we do not

present the detailed results when the satisfaction is converted to a binary metric; however, it is

worth mentioning that the prediction accuracy increases drastically when we reduce the number of

levels to two (i.e., 0 and 1 mapped to “unhappy” and 2 mapped to “happy”). We measure absolute

prediction accuracy as 97.1% if only binary satisfaction levels are predicted.

3.2.2 Building the User-independent Model with Different Groups and Group Sizes

To understand the impact of number of users in the training and testing groups, we conduct the

following experiment. We randomly divide the data from our 30-user group into three groups of

10 users each: Group 1, Group 2, and Group 3. Then, in the first category of predictions, we use

one group’s data to train the model and use the model to predict the satisfaction of the remaining

two. Then, in the second category of tests, we combine two groups’ data for training and use

the model to predict the satisfaction of the third group. All results are presented in Table 3.3.

The caption indicates the training and test data in the form of ’training set/testing set’. There are

two conclusions that can be drawn. First, the predictions are relatively stable across the group
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selections. For the first three results, the mean absolute error rates vary between 7.9% and 8.9%

and for the second set of results, the error rates vary between 9.0% and 9.9%. Second, when

the training set size is increased, the error rate increases. We advocate this to overfitting. It is

possible that the testing set of 10 users have a few outliers. When the training set is large, the

model will overfit to the general trends and perform worse for these outliers. To further investigate

the impact of group size, we have focused on the first experiment (Group 1 training and Groups 2

and 3 tested). Specifically, we have randomly divided the users in Group 1 into two groups of five

(Group 1A and 1B). Then, we trained the modeled with each and tested on the remaining groups

(Group 2 and 3). The mean absolute error was 15.5% for the training set of Group 1A and 14.1%

for Group 1B. The increase in the absolute error rates is not surprising: with only 5 users, there is

not enough training data to capture variety of behaviors. These results suggest that the set of 10

users is a good size for training for our participant population.

Figure 3.3: Average absolute mean error rates (sorted in red bars) for 3-level satisfaction predic-
tions of the models and average power consumption (blue bars) of logger application for each
sensor/feature combinations.

3.2.3 Accuracy of the Models With and Without Smartwatch Sensors

While studying the models, we also tested different sensor combinations at different sampling rates

using the methodology described in Section 3.1.2. Along with the smartphone sensor combinations
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we also include smartwatch sensor. Considering that not all smartphone users have smartwatches

in their daily lives, we were interested in discovering the accuracy of our models without the

smartwatch.

Figure 3.3 shows the importance of each sensor in the models and their overhead to the phone.

In the figure, y-axis shows the sensors and features tested to build models, top x-axis (blue bars)

shows the logger-application’s power consumption on the phone and bottom x-axis (red bars)

shows the error rates of satisfaction predictions. In the figure, “P” stand for phone, “W” stands for

watch, “Cam” stands for camera, “HR” stands for heart rate (beat per minute), and “Audio” is the

ambient noise in decibel collected from microphone. As shown in the figure, phone-only sensors

(P-Motion + Touch + Audio) still provide a reasonable accuracy (89.0%) with reasonable overhead

(on average 1.8% increase in CPU utilization and 144mW increase in power consumption). We

observe microphone in audio feature consumes 80-100mW more power on average, while touch

and motion sensor collection stays in the 10-30mW range. More importantly, false positive rates

with phone-only data is also small, 5.5% on average. Since each test is performed same duration

during power comparisons, sensors’ energy consumption comparisons are also same.

Smartwatch sensor data drops the relative absolute error rate by 1.8% and false positive rate by

0.5% on average in the models when combined with the phone data. We also observe background

service on the watch increase its power consumption by 9.2% on average (motion sensors consume

5-10mW and heart rate consumes less than 5mW power on average).

Even though watch data slightly improves accuracy in the models, a designer may decide to

ignore it due to its overhead; in such a case, we can use only phone sensors to predict satisfaction.

However, in order to analyze the relation between smartwatch sensors and user satisfaction as well,

we use the watch data in both user studies.

We should also note that, as shown in the Figure 3.3, we tested camera feature as well while

choosing sensors/features. We use Google’s Face API [11] to detect smile probability of the users

using the phone’s front camera in 6 different sampling rates from 0.2Hz to 5Hz. Even though

we observe a slight improvement of accuracy (1.0%), camera feature incurs a large overhead:
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20% increase in CPU utilization and around 40% (1000-1300mW) additional power consumption.

Thus, in order to keep the CPU overhead minimum, we excluded the camera feature and built the

models using features listed in Table 3.1, which give the most accurate results among the users

without using the camera (Figure 3.3).

Figure 3.4: Flow of predicting user satisfaction and setting CPU configuration in real time.

3.2.4 Second User Study: Comparing the User-independent Model, User-dependent Models

and the Default Scheme

Once the user-independent and the user-dependent models are developed, we conduct a second user

study to compare their performance on predicting user satisfaction and altering CPU configuration

in real time. In this study, we use the same 20 users who have a user-dependent model (from the

previous user study). Users are again provided with the test devices: Nexus 6p smartphone and LG

Urbane 2 smartwatch. Before starting the study, users are asked to install or login the applications

they typically use. In this study, we do not put any limitation on the application selection for the

users.

As described in the first user study (Section 3.2.1) we build models by setting CPU configura-

tions in random order. In the second user study, CPU configurations are set based on to the two

pre-loaded models’ (user-independent and user-dependent) satisfaction predictions on the user. We

make the logger application to decide tested models in random order and change them every 20

minutes. In order to compare both prediction models with the current default scheme, we also

make users test the default scheme for 20 minutes. During the default scheme, no sensor data is

collected by the logger application and CPU is set by the standard on-demand governor. During
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the study, users do not know which model (or scheme) they are testing. They use the given devices

and applications similar to the way they use their own phones.

Figure 3.4 provides an overview of the flow of prediction and setting CPU configuration in real

time. A more detailed pseudo-code is same as described in Algorithm 1 in Section 2. As shown in

the figure, first, collected data is fed to developed models. Model can be either user-independent

or current test user’s user-dependent model (note that the models are built in the first study and

loaded to the phone offline).

Then, instantaneous user satisfaction is predicted using these models. Since models are trained

with 3-level satisfaction inputs (as 0-very unhappy, 1-unhappy and 2-happy), their predictions also

range from 0 to 2. We predict the satisfaction every 5 seconds. If the prediction is higher than 1.75,

user is satisfied enough with the current CPU configuration and it can be dropped in the order to

save energy (e.g., switch it to 20std if the current configuration is 40min as shown in the order in

Figure 2.5(b)). If the prediction is less than 1.25, CPU configuration is moved up (i.e., perfor-

mance is increased) to prevent any potential user dissatisfaction. Additionally, each user tests the

default scheme, where core counts and frequencies are set by the default on-demand governor in

Android OS. We determine the upper (1.75) and lower (1.25) bounds by conducting experiments

with several levels in our lab. It is possible that other levels may be preferable by different devel-

opers. These levels could also be changed to make our system more (or less) aggressive. However,

we found these bounds to work well in general.

During the second user study, in order to minimize the variation across different runs, users

are asked to repeat the same applications every 20 minutes. A supervisor guides them throughout

the experiment. We also collect users’ overall satisfaction reports at the end of each 20 minutes

through a pop up questioner on the phone screen. After the experiment starts, the questioner is

shown to users every 20 minutes. In the questioner, users answer the question “How was your

phone’s CPU performance for last 20 minutes?” from a 5-scale radio style selection: 1 is worst, 5

is best. We collect ratings for last 20 minutes’ performance in order to analyze how different CPU

management models affect the overall user experience.
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Figure 3.5: (a) Average power consumptions (in mW) and (b) user satisfaction reports for each
model for 20 users.

3.3 Test Results

In this section, I present results of the second user study to compare the user-independent model,

the user-dependent model and the default scheme. Figure 3.5 presents (a) the average power con-

sumption (in mW) and (b) the reported overall satisfaction for the 20 users in our experiments.

As shown in Figure 3.5(a), the default scheme’s power consumption is highest for most of the

users; 16 out of the 20 users experience the highest power consumption with the default scheme.

Since we do not limit application selection for our users, we also observe a large variation be-

tween power consumption levels of each user. Overall, our models are successful in saving power:

user-independent (for user 16) and user-dependent models (for user 15) can save up to 21.58%

and 20.4% of the total system power, respectively, compared to the default scheme. On average,

user-independent and user-dependent models save 8.96% and 10.12% system power, respectively.

Please note that these power savings are achieved despite the fact that our logger increases the

power consumption since it collects sensor data, which is not done during the experiments involv-

ing the default scheme.

Figure 3.5(b) plots the satisfaction reports gathered from each user at the end of each model

testing (through pop up questioner on the phone screen). As shown in the figure, there is a large

variation in user satisfaction levels. We observe that some users are more sensitive to the CPU

changes and even a short latency on responses make them drop their scores to lower rankings on the
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Table 3.4: Statistical difference comparisons of satisfaction ratings. (a) Mean and standard devia-
tion values of satisfaction ratings for each model. (b) Results of Friedman and ANOVA tests.

tested model. On average, the default scheme seems to slightly outperform the user-dependent and

user-independent models: the average satisfaction levels are 4.78, 4.73, and 4.68 (Table 3.4(a)) for

the default, user-dependent, and user-independent schemes, respectively. A closer look, however,

indicates that the differences between the schemes are negligible (in fact, we provide a statistical

analysis in the following that shows this is indeed the case). First, the 0.05 difference is a single

point from a single user. In other words, if one of the users rated their user-dependent scheme one

point higher, the average would reach the same level as the default scheme. Second, out of the

20 users, only 1 rated the default scheme higher than both models. On the other hand, 3 out of

20 users selected either the user-dependent and/or the user-independent model as the best. This

indicates that most users could not distinguish the differences between the schemes. Since the

proposed system is implemented as a software mechanism, it can be optional to users and can

be turned on/off based on user’s selection (i.e., it can be deactivated for 1 user who rated default

scheme higher). The power consumption levels are presented in Table 3.5(a). User-dependent and

user-independent models save 10.12% and 8.96% of the system power, respectively.

In order to analyze the satisfaction and power consumption results further, we performed

ANOVA [19] and Friedman tests [50] to see how these three models’ results differ from each

other. Table 3.4(b) shows the p-values of satisfaction comparisons and Table 3.5(b) shows the

p-values of power consumption comparisons. As shown in the Table 3.4(b), p-values for satisfac-

tion comparisons are higher than 0.05, which indicates that result is not significant and means do

not differ. Since p-values are not significant, we did not conduct pair-wise t-test on the models.

However as shown in the Table 3.5(b), p-values of power consumption comparisons are lower than
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Table 3.5: Statistical difference comparisons of power consumption levels. (a) Mean and standard
deviation values of power consumptions (in mW) for each model. (b) Results of Friedman and
ANOVA tests. (c) Results of post-hoc pair-wise t-test p-values.

0.05, which indicates that result is significant. In order to understand how each model differs from

each other, we conduct post hoc pair-wise t-tests [102]. Table 3.5(c) shows the p-values acquired

from the pair-wise t-tests. As shown in the table, p-values for user-dependent and user-independent

model vs default model are less than 0.05, meaning that there are differences in the means of these

groups. By observing both Table 3.4 and Table 3.5 we can conclude that proposed models can

indeed save power without impacting user satisfaction.

3.4 Correlation of Sensor Data With User Satisfaction

In this section, I analyze the relation between collected sensor data and user satisfaction in more

depth. First, I show the correlation of sensor data and user satisfaction using all accumulated data

(with all 30 users) to see the general patterns. Then I discuss how each user’s sensor values change

based on their satisfaction.

3.4.1 Correlation of Sensor Data With User Satisfaction

As described in Section 3.2.1, we use REPTree algorithm in our models. In the algorithm, pre-

dictions were made based on the branches formed by the information gained from each feature.

To be able to see how much information is gained from each feature, we extracted them using

Weka-tool’s “InfoGainAttributeEval” evaluator from Attribute Selection [138]. Table 3.6(a) shows

accumulative information gain of each feature group. To make a clear view in the table, we accu-
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Table 3.6: (a) Total information gained from each sensor group. (b) Average user satisfactions for
each configuration and defined configuration groups.

mulated same set of sensors and grouped them in the row. In the following sub-sections, we discuss

each sensor individually. Table 3.6(b) presents the average user satisfactions reported for each CPU

configuration. As shown in the table, four active cores operating in middle and on-demand gov-

ernor frequencies have similar satisfaction averages. Same similarity shows itself for two active

cores operation in middle and higher frequencies. Specifically, we group these 7 configurations

into 3 groups based on the average satisfaction levels reported: 40mid, 40std, and 44std have all

close to perfect satisfaction and are labeled “Higher”, configurations 20mid, 20std, 40min have

slightly lower satisfaction levels and are labeled as “Middle”, and 20min is marked as “Lower”.

As shown in Table 3.6(b), we observe that in general when users are provided with fewer active

cores and lower frequencies, they become dissatisfied with their phone’s performance. Apparently,

one of the obvious reasons is the long latencies in responses and delays in computations of these

fewer cores. But since not all users are affected same from these fewer cores and frequencies, user

preferences and expectations are also vital on understanding impact of number of cores on user

satisfaction. It is also worth to note that, while satisfaction is increasing with the higher number

of cores and frequencies, it slightly drops when the CPU is set to default scheme (44std). Since

standard governor dynamically scales core and frequency depending on the CPU load, fewer cores

and lower frequencies may be set in time and users may be affected negatively from these changes.

This is also a similar result we acquired in default scheme’s reports in Section 3.2.
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Figure 3.6: (a) Averages of raw audio records in decibel and (b) averages of maximum audio
records in decibel.

Audio

Audio is the most information gained feature as shown in Table 3.6(a). We collect ambient audio

amplitude (in decibel) from our users in 2Hz sampling rate using Android AuidoRecord library

[21] with the microphone. Target device has built-in MEMS microphones, which enable ambient

noise canceling to improve input voice quality [43, 41, 7]. Along with the raw records, we also

logged their statistics such as mean, maximum, and minimum values in 5-second time windows.

From these statistics, we observe raw audio records and maximum audio records give the highest

information. In Figure 3.6(a) and Figure 3.6(b), we plot averages of these audio records for each

CPU configuration group (lower, middle, higher). In order to compare the data with user satisfac-

tion levels, we also plot average user satisfaction for each configuration group on the right y-axis

(red).

In the user studies, we observe that when users become unsatisfied with their phones’ perfor-

mance (due to long latencies on responses or skipped frames on the screen etc.), they tend to lose

their interest with the tasks/applications. This results in some behavioral changes among the users

including starting a verbal communication with the supervisor, adjusting sitting, or changing phone

holding positions.

We first monitored these changes in audio records. We observe on the majority of the users

that when they face increased latencies or unresponsiveness on the phone, they chose either to

start a conversation, yawning, or tapping until the phone becomes responsive again. Thus, when
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they are unsatisfied, users tend to give up on the current task and devolve into other activities [75].

Therefore, in Figure 3.6(a) and Figure 3.6(b), we observe negative strong correlation with decibel

records and user satisfaction reports: decibel records drop as satisfaction increase.

Figure 3.7: (a) Distribution of x-y coordinate distances on the screen for each configuration group
and (b) averages of x-y coordinate distance on the screen touch for each configuration group.

Figure 3.8: (a) Averages of number of touch counts on the screen for each configuration group and
(b) averages of touch inputs sizes for each configuration group.

Touch Events

We collect touch events as shown in Table 3.1. From these events, we observe recorded x and

y coordinate values on the screen give the highest information gain (they compose 1.13 of 1.27

information gain) in the models. These values show the touched screen point in two dimensions

(2D). In order to plot a clear view, we calculate the distances from (0,0) point to each touched point

with the Pythagorean formula:

distance =
√
x2 + y2

We observe a large variation between the distances in configuration groups. Figure 3.7(a) shows

the distributions of the calculated distances for each configuration group. In the figure, whiskers
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extended to include all data. As shown in the figure, variation in the distances increases as the

satisfaction increases. Their standard deviations for lower, medium, and higher CPU configurations

are 11.67, 16.14 and 17.43 respectively. Similarly, we plot the averages of these distances in

Figure 3.7(b) and observe a similar trend. Finally, we plot the average of total finger touch counts

and average of the touch sizes in Figure 3.8(a) and Figure 3.8(b). We calculate touch sizes from

the horizontal and vertical elliptic areas on the screen given by “getevents” in Android [12]. For

both figures, we observe that there is a trend that averages of touch counts and touch sizes decrease

while satisfaction increases. Also, least satisfied configuration defined as “lower cores” (20min,

i.e., only 2 active little cores with minimum frequency) has the highest number of touches and

highest touch size on average.

As being the second most information gained feature, touch events are also significant com-

ponent of our models. We observe that users give more touch inputs with bigger touch sizes

when they are less satisfied with their phone. But we also observe that, their x-y coordinate touch

distance variations and averages stay in minimum (Figure 3.7(a) and 3.7(b)). Assuming that unsat-

isfied configurations cause unresponsiveness, users may become more demanding by giving same

or similar inputs (commands) on the screen. On the other hand, we observe that, in general x-y

coordinate distance averages and variations increase as the user satisfaction increases. This shows

that users touch (give input commands) more diverse positions on the screen with lighter touches

when they are satisfied.

Figure 3.9: (a) Distribution of phone’s accelerometer distances for each configuration and (b)
distribution of watch’s accelerometer distances for each configuration group.
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Accelerometer

We collect acceleration force along the x, y and z-axis from both the smartphone and the smart-

watch. These values show the force applied to the device from all three physical axes (including

the force of gravity). Accelerometer sensor is commonly used in motion detections (shake, tilt,

etc.). In order to get a clearer view of these three axes, we calculate the distance of them with the

formula:

distance =
√
x2 + y2 + z2

Figure 3.9(a) and Figure 3.9(b) show the boxplots of calculated distances from the collected

sensors on the smartphone and the smartwatch, respectively, for each configuration group. Again

we observe a large variation in the distribution of distance values across configuration groups. As

depicted in the figures, the range and variation become smaller as the satisfaction increases. The

standard deviations for lower, medium, and higher CPU configurations are 0.40, 0.21, and 0.12

for the phone and 0.24, 0.19, and 0.16 for the watch, respectively. We observe a clear decrease in

the variation between distributions in phone’s accelerometer data in Figure 3.9(a). For the most

unsatisfied configuration (20min), we observe the accelerometer data is the most scattered.

Similar to the previous justifications on user behaviors, we notice that, users tend to move more

when they become unsatisfied with their phone. This includes adjusting the seat or sitting position,

shifting phone to other hand, shaking the phone, etc. Since these movements include 3D physical

actions, we see a large variation with accelerometer data. On the contrary, we observe that users

become more involved and focused with the tasks and applications when they are satisfied with

their phone. As shown in the figures, this yields to more stable holding (lower variations in the

distributions) of the phone and watch.

Heart Rate

In user tests, we collect heart rate at 1Hz rate from the smartwatch. Heart rate is measured from

the wrist through a green LED lights sent to skin. Similar to the other sensors, we use Android’s
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Figure 3.10: (a) Observed heart rate (beat per minute) averages from smartwatch’s built in heart
rate sensor for each configuration group. (b) Distribution of heart rate values for each configuration
group.

built in API to monitor the heart rate. The API report heart rate as discreet current beat per minutes

(BPM) values. For simplicity, we refer beat per minute values as “heart rate values” in this chapter.

Figure 3.10(a) shows the averages of observed heart rate and Figure 3.10(b) shows the distribution

of the these values, for each configuration. Although the average heart rate difference is small

(70.6 for the lower versus 71.5 for the higher) and information gain from it is relatively small,

we still observe a correlation between the heart rate values and user satisfaction. As shown in

the Figure 3.10(a), heart rate averages increase when users are more satisfied with the phone’s

performance. Moreover, we observe standard deviations as 7.78, 8.60, and 8.06 for lower, middle

and higher core groups, respectively.

There are many studies observing variation in heart rate and average heart rate under different

emotional states. Studies [26, 44] show that users feel high arousal and higher heart rate values

when they feel stress or anger. They make these observations by conducting stress inducing user

tests (ice bucket test, social stress test etc.). Unlike these studies, our user experiments do not

include any stress inducer workload. Moreover we select the seven most common Android ap-

plications when building the user-independent model (in the first user study) and do not limit any

application selection in the second user study (users choose whichever application they want to

use). Thus, when users are dissatisfied with their phone due to long latencies and unresponsive-

ness, we are potentially observing boredom rather than stress for most of our users. Boredom is

defined as lack of interest [37] and a state of relatively low arousal and dissatisfaction, which is

attributed to an inadequately stimulating situation [68]. There is a significant amount of studies



www.manaraa.com

74

exploring boredom [39, 93, 68]. These studies mostly observe behavioral changes under boredom

inducing experiments (i.e., time slowing experiment [93], reading boring story experiment [39],

etc.). Unlike the stress inducing experiments, their results also show low arousal along with low

variation in heart rate values when people face with boredom, which is similar to our observations.

Figure 3.11: (a) Distribution of phone’s gyroscope distances for each configuration group and (b)
distribution of watch’s gyroscope distances for each configuration group.

Gyroscope

We collect smartphone’s and smartwatch’s rate of rotations around each physical axis (x, y, z) using

the gyroscope sensor on both devices. Gyroscope sensor is commonly used in rotation detection

(spin, turn, etc.). In order to get a clearer view of these three axes, similar to Accelerometer

Section, we calculate the distances of them using formula in Accelerometer Section.

Figure 3.11(a) (for phone) and Figure 3.11(b) (for watch) show the gyroscope distance distribu-

tions for each configuration group. Similar to Figure 3.9(a) and 3.9(b) (which present accelerom-

eter data), in gyroscope data, we generally see a reduction in boxplot whisker sizes when user

satisfaction increases and larger variation when users are unsatisfied. Their standard deviations for

lower, medium and higher configurations are 0.29, 0.16, 0.12 for the phone and 0.32, 0.17, 0.09

for the watch, respectively.

3.4.2 Correlation of Sensor Data and User Satisfaction For Each User

In the previous section, I show the common patterns between sensor values, user satisfaction, and

CPU core groups from all users’ cumulative data. In this section I discuss the sensor values and
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Figure 3.12: Proportions of sensor values based on their information gain for each user-dependent
model.

user satisfaction relation for each user and show how each user’s prediction models differ from one

another.

Figure 3.12 shows the proportion of information gain from each sensor group for each user.

For these tests, we have developed user-dependent models for the first 10 users as well (note that

these users provided the data for the user-independent model and did not participate in the second

user study where the user-dependent models we utilized). In the figure each bar sums up to 100

and each color represents a specific sensor group. Similar to Table 3.6(a), we accumulate same

set of sensors and group them as one (for example, we accumulated all features acquired from the

screen touches as described in Table 3.1 as “touch” in the figure).

In our experiments, we observe a large variation in user behaviors when they face dissatisfied

CPU configurations. While some users do not notice and/or show any reaction to CPU changes,

some other users are respond more erratically to these changes. However, we still observe audio

and touch features as the most informative features across all users. This is not surprising since we

still observe a low absolute mean error rate (10.82%) when we combine all users to build the user-

independent model in Section 3.2.2. If the features would have been completely different across

users, a) it would be hard to see a general pattern described in Section 3.4.1 and b) we should be

seeing a higher error rate and higher dissatisfaction rates from the user-independent model in the

second user study. Moreover, as described in Audio section, audio sensor records ambient noise



www.manaraa.com

76

through built-in microphones in the target phone. Since the phone’s or the user’s position also

effect the recorded ambient noise, audio sensor is sensitive to other environmental changes. For

example, for user 3, while we do not observe any verbal indicator (tapping, yawning, etc.), we

observe constant 3D movements when the user becomes dissatisfied. Since any physical change in

the user or in the phone affects the recorded ambient noise of the environment, we still observe a

significant information gain from audio sensor for this user. Overall, we observe audio and touch

features roughly holds approximately between 40% to 70% of the total information gain for all

users.

Motion sensors (accelerometer and gyroscope sensors for both devices) are another feature

group that shows large variation among users. We observe that majority of the users make (big

or small) physical movements when they become dissatisfied due to long latencies or unrespon-

siveness. On the other hand, there are still some users who show minimum (or no) movement and

therefore their motion sensor’s information gain is small (e.g., user 1). We also observe more infor-

mation gain from the watch’s sensor since it is embedded to arm and more exposed to any physical

movement. Overall motion sensors are an important part of the models and they constitute 40% to

60% of total information.

Heart rate is the number of beats per minute and its sedative state is different from individual

to individual. However, there is an expected range in sedative state heart rate based on some

internal and external factors for the individuals (e.g., age, sports history, environment temperature

etc.) [64]. Due to similarities of these factors in our users, we do not observe drastic variations in

the heart rate values. Specifically, all selected users are between age 20 to 50 and none of them

are either athlete nor have any heart disease. Moreover, since we do not include any high or low

arousal inducer workload/activity in the studies, we do not observe a large variation in heart rate

values. Having said that, there are still some users whose heart rate is an important indicator for

their user-dependent models. For example, for user 23, heart rate constitutes almost 10% of the

total information gain. When we look at the user 23 in more detail, we observe that user’s heart rate

value averages show more diversity compared to other users (we observe average heart rate values
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as 63.69 and 68.73 in dissatisfied and satisfied conditions, respectively). Furthermore, in 9 out of

30 users, we observe higher heart rate values when they face dissatisfaction. We believe that these

users feel anger rather than boredom and show high arousal signals. In fact, heart rate variability in

emotional states is still a discussion in the field of Psychology. Overall, although heart rate values

are important for some users in their user-dependent models, for other users information gain from

heart rate is small.

3.5 Discussion

Limitations of using “best” configurations for each user. In our system, we use sensors to

predict users’ satisfaction level on their smartphone’s CPU performance in order to manage CPU

configurations. Instead of using sensor values, one could identify some best CPU configurations

for each user and manage CPU with these configurations. However there are two limitations of

this approach:

- Configurations may be different for each application. As explained in the first user study (Sec-

tion 3.2.1), we change CPU configurations randomly while running seven most common Android

applications and ask users report their dissatisfaction through a notification bar on the screen. In

this study, we observe large variations in user satisfactions with different applications. For exam-

ple, user 5 did not report any dissatisfaction during the “Instagram” application; but s/he marks all

configurations as dissatisfied except 40mid and 44std (4 little cores running in medium frequency

and all 8 cores are active in standard governor) for “Google Chrome” application. If we were to

find the best configurations for this user, we need to find the lowest power consuming configura-

tions where the user will always be happy (i.e., 40mid). The result of selecting this configuration

will be increased energy consumption for the applications where user can be satisfied with lower

energy consuming core/frequency configurations. Moreover, it is still not guaranteed that selected

best configuration(s) is the best for all applications. In this study, we work with seven applica-

tions and for some other applications user’s best configuration(s) may be different. One solution

to this problem could be identifying best configurations for each application. However, as the list
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of applications that can be used is extensive, it would be more expensive (in terms of memory and

computation) to create such a CPU configuration/application table. Moreover every time a new

application is started, a similar methodology should be run in order to find best configuration for

this application, which may degrade the user experience.

- Configurations are needed to be updated/changed as the user’s preferences change. An-

other disadvantage of identifying some best configuration(s) for users is that it needs to be up-

dated/changed dynamically if user’s preferences change. It is possible that users may require

different configurations based on their current activity, usage, mood, etc. In such cases, identified

best configurations may be insufficient to meet the needs of the changing user preferences.

The proposed system utilizes built-in sensors in the smartphone to predict user dissatisfaction

and manage CPU based on these predictions. We make the system as application-independent

as possible specifically for the reasons mentioned above. Moreover, since the proposed system

depends on built-in sensors, a new prediction model can easily be built online with the new user

performance preferences.

Energy savings’ effect on user satisfaction. There is a tremendous effort in the smartphone

industry to find solutions to extend the battery life-time. Using batteries with more capacity could

be a trivial solution, but unfortunately their technological evolution does not follow the trends dic-

tated by Moore’s Law. While the computational complexity is doubled every two years according

to Moore’s Law, the battery capacity is doubling only every decade. Designers have reverted to

architectural and system-level optimizations to keep energy consumption down. Despite the im-

portance of end user in smartphones, how much these efforts affect user experience is still not

clear. Any improvement in performance or a new hardware feature is easily observable and can

have a direct effect in user experience. However energy savings’ effect is non-trivial and (possibly)

has influence only in the long run. Thus, it is challenging to measure and factor its effects in in-

stantaneous user experience/satisfaction. If users knew their smartphone’s current energy savings,

it is possible that their experience may be different. They may even be willing to sacrifice more

(if it leads to more power savings). Similarly, if manufacturers knew their efforts’ effects on user
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experience, they can focus more (or less) on extending battery life-time.

In order to get an insight of how much battery life is important for users, we conduct a survey

in Amazon Mechanical Turk (mTurk) [115] with 500 users. In the survey, we asked users to

rank the most important feature they look in their smartphones. We give them only performance,

battery, and brightness options. 58% of the mTurk users select performance as the most important

feature in a smartphone while 38% choose battery. If we replace the performance with other

hardware/software components (i.e., camera, operating system, etc.) we observe more than half of

the users (53%) choose battery over any individual component. Other online surveys also reflect

similar results [49, 51, 17]. Battery life-time is certainly an important aspect of user experience

in smartphones but to the best of our knowledge there is no work on measuring its quantitative

impact on user experience. Although we do not know energy savings’ instantaneous effect on user

experience, due to its importance to users, it is reasonable to expect that our system would be rated

even higher since it is saving energy compared to the default mechanism.

Using the proposed system in real-world deployment. As explained in Section 3.2.3, in the

proposed system, sensor collection and CPU setting is done by a lightweight logger application

in real-time. Therefore, the proposed system does not require any special hardware or software

and is executable in any Android smartphone and smartwatch. However, Android OS requires root

permission (superuser) in order to alter CPU configurations in system-level. Since root access is

not granted as default and having a root access violates the manufacturer’s guarantee/insurance on

the target phone, we conduct our user studies in the lab environment (Section 3.1) on 30 real users.

Having said that, the proposed system can easily be adopted in real-world deployment scenarios

due to its minimal energy consumption and simple to use user interface. Moreover, we use off-the-

shelf devices so that inexpensive large-scale deployments can also be possible. As discussed in

Section 3.1 and Section 3.2.2, activating the logger increases energy consumption by 2.8% on the

phone and 9.2% on the watch on average. Even though watch data slightly improves predictions

in user satisfaction in the system, a designer may decide to ignore it due to its overhead. In such a

case, we can use only phone sensors to predict satisfaction and can still have high accuracy (over
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89%) on predicting satisfaction in real time.

Another advantage of the proposed system is the small overhead of building a new model. In

case user preferences change by time, the system can re-build the prediction model from accumu-

lated user data on the fly and can make predictions with this updated model.

3.6 Summary

In this project, we study CPU management in mobile systems with respect to real end user experi-

ence. Specifically, we propose a system that alters the number of active cores and their frequencies

in a multicore smartphone in order to save energy. The system benefits from the strong correlation

of user satisfaction with motion sensors, audio records, and touch events collected from a smart-

phone and a smartwatch device. In the proposed architecture, we first collect sensor data along with

current user satisfaction levels reported by the users with the phone’s performance while varying

the active cores in the CPU and their frequencies. Then, we predict users’ instant satisfaction and

alter CPU active core/frequency configuration in real time. We demonstrate that, we can predict

satisfaction with over 91% accuracy with 3-level satisfaction model and with over 97% with binary

satisfaction model.

We evaluate the proposed system by developing and comparing two different models. We

develop a user-independent model with 10 users’ cumulative data and user-dependent models for

20 different users. We made users compare the user-independent model, their own user-dependent

model, and default scheme. Our results show that, on average user-dependent models and the

user-independent model save 10.12% and 8.96% of the total system energy, respectively, without

impacting user satisfaction.

To the best of our knowledge, this is the first study concentrated on built-in sensors, gathered

from mobile devices, rather than system metrics on understanding user experience in multicore

smartphones.
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USING BUILT-IN SENSORS TO CONTROL SCREEN BRIGHTNESS

The display is the primary user interface on many computing devices: ranging from traditional

devices such as desktops and laptops to the more ubiquitous devices such as smartphones and

smartwatches, the display is arguably the most important interface. While earlier displays were

only an output system for these devices, the introduction of touchscreen feature made them the

main input component as well. The absence of a proper keyboard and mouse hardware for smart-

phones increased the importance of touchscreen displays. As a result, we have observed increasing

display sizes over the years. While the larger displays are ideal for various functionalities (e.g.,

video viewing), they also cause a high consumption of available battery power. Prior work shows

that display power consumption can reach to 50% of available battery resources [107, 119, 147,

105]. A quick solution to reduce display power consumption is to dim the display backlight. While

this can lead to significant power savings, it also has the possible side effect of degrading user ex-

perience due to reduction in the visibility of the display.

In order to address this dilemma (power savings vs. user experience), systems typically control

brightness by measuring ambient light level: if the smartphone is under direct sunlight, backlight

is increased in order to provide a better visibility whereas if the phone is in a dark room, backlight

is dimmed in order to decrease power consumption as well as increase user experience (generally

a too bright display is not desirable in a dark room). Although theoretically this implementation

works well, prior work [113, 27] shows that this mechanism can be improved significantly. Using

only ambient light sensor ignores the other sensors’ effect on brightness settings and using a static

one-size-fits-all model ignores varying user brightness preferences. Clearly not all users are the

same and it is possible that some users might prefer different brightness levels even under same

conditions. Therefore, there is a need to understand the user-specific brightness preferences in

order to control display brightness on the phone. The challenge to achieve this is to be able to
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predict desired brightness settings accurately in real time.

In this project, we propose a system that utilizes built-in sensors in a smartphone to get infor-

mation about phone’s and environment’s state to predict the desired brightness level and set screen

brightness accordingly in real time. The aim of the system is to increase display user satisfaction,

while also minimizing (or at least keeping the same) power consumption on smartphones. We

evaluate our system by conducting two IRB (Institutional Review Board) approved user studies

with a total of 47 users and 23 different smartphone models/brands with varying API versions.

We conduct both studies in the wild by releasing logger applications to market. In the first study,

we create a user-independent (user-oblivious) model from 10 random users’ cumulative data of-

fline. In the second study, we create user-dependent models online for each user (different from

the first study users) and make them use their phones while the brightness is controlled by the

user-independent model, their user-dependent models, and the default scheme each day in a ran-

dom order. User-dependent models are re-built constantly as the models learn more about users’

brightness preferences dynamically in the wild. Our results show that, user-dependent models

and the user-independent model can predict users’ brightness preferences with over 95% accuracy

and increase display brightness satisfaction by 12.62% and 4.81% on average, respectively, when

compared to the default scheme. Moreover, in the proposed system, we implement a gradually

dimming mechanism in order to save power especially in long usage scenarios. We set the dim-

ming limit to up to 10 brightness level in order to prevent any user dissatisfaction and show that

proposed system saves 8.26% and 5.08% system level power consumption with user-dependent

and user-independent models, respectively, when compared to the default scheme.

Table 4.1 shows the brands/models and Android versions of the participants’ phones. Note

that, in both user studies, we collect data by releasing logger applications to Google Play Store.

Therefore, we did not attempt to control or select any of our participants. The users are anonymous

people who downloaded our logger application from the market and use it just like any other

application they install from the market.

Moreover, we study the relation between the sensor data and screen brightness preferences of
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users in more detail. We show that the collected sensor data is strongly correlated with users’

brightness preferences. We also discuss possible reasons behind this correlation.

Overall our contributions can be listed as below:

• We show that we can accurately predict users’ brightness preferences using built-in sensors

on a smartphone.

• We show that using only ambient light sensor is not sufficient for capturing the variation in

user brightness preferences and present data from other sensors that are highly correlated

with these preferences.

• We show tools and methods to build and learn from users’ brightness preferences in the wild

and control brightness in real time.

The rest of the chapter is structured as follows. In Section 4.1, I present background informa-

tion and motivate our approach. I then explain our experiments in Section 4.2. In Section 4.3, I

discuss the results. I analyze the correlation of sensor data and user brightness preferences for all

users in Section 4.4. I present further discussion in Section 4.5.

Table 4.1: Participants’ Phone Brands/Models and API Levels

Advan eie Tablet 3G - 23 Samsung Galaxy S5-9 - 24, 25
Alco-RCT6973W43MD - 24 Samsung Galaxy S9 Plus - 24, 26
Huawei Mate 10 Lite - 24 Samsung Galaxy S7 Edge - 23, 24
Huawei MediaPad - 24 Samsung Galaxy on5, on7, - 26
Huawei - Nexus 6P - 25 Samsung J2, J5, J7 - 25
Huawei P9 - 24 Samsung Note 5 - 24
Lava Xolo - era3x - 24 Samsung-SM - 24, 28,29
Lenova K6 - 24, 25 Sony Xperia Z3 - 23, 24
Motorola-Moto G (4) - 24 TCL-5009A - 24
Motorola-Moto G (5) Plus - 25 Vivo - 28
Pixel-2 - 28, 29 ZTE - Blade V8 - 23
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4.1 Background

4.1.1 Visual Performance

Even though there are many metrics to evaluate the quality of a display, we focus on visual per-

formance, which is one of the most commonly used metrics. Rae et al. [109] define visual per-

formance as the speed and accuracy of processing visual information and show that visual perfor-

mance is mostly related to luminance and contrast ratio. Luminance is defined as the intensity of

light per unit area as either emitted or reflected. The contrast ratio is the ratio of the luminance

of the brightest color (white) to that of the darkest color (black) that the smartphone display is

producing. A high contrast ratio is a desired aspect of any display. For instance, in a completely

darkened room, the contrast ratio is precisely determined by the white and black pixels in the phone

display. However, in a well-lit environment which involves a significant amount of ambient light,

display’s optical characteristics necessarily do not absorb all of the incoming ambient light and

some of that light is reflected back to the viewer. This reflected light reduces the resulting contrast

ratio. Therefore, modern smartphones use ambient light sensor to measure the incoming light level

and control brightness accordingly in order to increase contrast ratio (i) for better user experience

and (ii) for screen energy saving.

Figure 4.1: Aggregated readability curves for users of varying ages. As people age, their ability to
discern detail drops significantly at a given luminance and contrast ratio level. Source: [74]
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Figure 4.2: Default scheme’s (ambient-only solution’s) screen brightness settings in increasing,
decreasing, and random order ambient light changes.

4.1.2 Mobile Displays

Liquid Crystal Display (LCD), Organic Light Emitting Diode (OLED), and Active Matrix Organic

Light Emitting Diode (AMOLED) are the most common display technologies used in mobile de-

vices. LCD is the most widely used display technology in the market. It is made up of liquid

crystals that get illuminated by a fluorescent backlight. The liquid crystal matrix contains an ar-

ray of red, green, or blue crystal light filters and controls the colors on the screen. On the other

hand, OLED is a completely different display technology. It is a thin-film display technology that

contains OLED, an organic material which emits light when current is passed through it. OLEDs

display blacks better and consume less power (5.7% less on Samsung smartphones [31]) when dis-

playing darker colors as OLEDs are always off unless electrified individually. AMOLED adds a

layer of semiconducting film behind the OLED panel, which in turn allows it to activate each pixel

faster. The increased speed makes it ideal for larger, higher definition displays with a large number

of pixels. AMOLED screens also tend to have better contrast, as the light on the screen comes

from each individual pixel rather than a backlight; when it needs to create a black color it simply

dims or turns off the relevant pixels, for a true, deep black. Although all of these technologies have

their pros and cons, the fraction of phones with AMOLED display technology is increasing in the

market. Since we conduct our user studies by releasing logger applications to market, we do not

control the display technology used. Fortunately, as shown in Table 1, our participants use various

models of phones; thus we were able to test all display technologies.
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4.1.3 Limitations of Ambient-Only Mechanism

As explained earlier, phones typically control brightness by measuring ambient light in the en-

vironment (we call this the “default scheme” for the rest of the chapter). There are three main

limitations of this approach.

First, default scheme ignores varying user brightness preferences by implementing a static one

size fits all model. This implementation basically assumes that all users have the same require-

ment and a static model is sufficient for good user experience. However, prior work shows that

user brightness preferences vary among users. Kelley et al. [74] study RVP (Relative Visual Per-

formance) of users in varying age groups and in varying contrasts. They find that there is a strong

correlation with the required contrast ratio and age. Figure 4.1 shows that a 75-year-old person

requires roughly twice the contrast ratio that a 20-year-old person does at the same luminance and

contrast ratio to achieve a similar RVP. Moreover, Schuchhardt et al. [113] conduct a user study

to observe users’ brightness preferences under varying luminance. They find that, even under the

same conditions, users’ preferences show diversity both within each other and from the default

scheme’s settings.

Second, default scheme ignores other sensors’ effect on user brightness settings/requirements.

This implementation assumes that using only ambient light sensor is sufficient to control bright-

ness. However, studies [113, 27, 22, 82] show that brightness can be controlled more efficiently

by utilizing more metrics/contexts. For example, as we discuss more in the Related Work section,

authors in [113] show that location is also important factor on predicting screen brightness. This is

also intuitive: the brightness requirement may be different if the user is sitting on a couch versus

walking (even if the ambient light may be the same). In the proposed brightness prediction system,

we utilize 16 features acquired from a variety of components of a smartphone including motion

and environment sensors, screen touch counts, and audio records. We also discuss the correlation

between brightness preferences and these features in Section 4.4.

Third, default scheme is not sensitive to all ambient light changes. In order to understand

how brightness is controlled by default scheme, we reverse-engineer the method by observing
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brightness values under increasing, decreasing, and random order ambient light environments.

We use two devices for this experiment: a Nexus 6p and a Samsung Galaxy S7. Both observed

screen brightness level and ambient light reading data are retrieved from the operating system. The

continuous model of this data is presented in Figure 4.2. Note that we observe the same outcomes

for both devices. As shown in the figure, in overall, the screen brightness follows the square

root of the ambient light levels, reflecting Steven’s Law [123]. When we look more carefully,

we make two more observations from these experiments. First, for the same ambient light level,

we observe different brightness settings depending on the given ambient light order (increasing,

decreasing, or random). For example, for ambient light 1200-1220 lux, we observe default scheme

sets brightness to 135 when increasing ambient light order is given. The brightness is set to 176

(from 0-255 discreet levels) when a decreasing ambient light is given. There is a big difference

between these brightness levels and their power consumption [114, 105, 147]. Second, for a large

range of ambient light windows, brightness is not changed. Especially when ambient light is

above a certain level (i.e., 1800 lux), we observe that brightness stays longer at the same level.

Manufacturers may do these implementations in order to avoid any user dissatisfaction caused by

a sudden or wrong brightness changes. However, a finer grain adjustment can be used in order to

save more screen power.

Figure 4.3: GUI part of the phone (on the left): sliding bar on the screen to collect brightness
preferences and background service functions from data collection to brightness settings (on the
right).
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4.2 Experimental Setup

In this section, I discuss our user studies. I first introduce our logger application along with col-

lected sensor information and the overhead of our tools. Then, I explain our two IRB approved

user studies where we build user-independent and user-dependent models.

4.2.1 Logger Application and Set of Sensors

We develop a sensor-logger application to collect sensor data from target devices and release it on

the Google Play Store. The logger is developed as a regular Android Runtime (ART) executable

using the Java standard libraries available in Android frameworks. Thus, it runs on all Android

smartphone devices without any special hardware or OS support. At a high-level, the logger ap-

plication consists of two parts: (1) a GUI, which creates a sliding ball on the screen and looks like

a regular smartphone application and (2) an associated background service to provide the logging

functionality.

• The GUI application is designed to collect user brightness preferences through a sliding ball

on the screen. This ball always stays at the front screen. When it is dragged up, screen

brightness is increased, on the other hand, when it is dragged down brightness is decreased.

We made this ball to enable an easy access for users to set brightness (Figure 4.3 left image).

We scale the ball’s movement in 0-255 range with the target phone’s screen size in order to

set minimum and maximum available brightness on the screen.

• Background service starts as the GUI starts. The service is responsible for 1) collecting

sensor data, 2) building user-dependent model from user’s sensor data, 3) predicting current

user brightness preference using the developed models, and 4) setting screen brightness in

order to maximize user satisfaction while minimizing power consumption. Figure 4.3 (right

side) shows the background service’s tasks. Also, the service periodically looks for a net-

work connection and sends the collected data back to our server when the collected data size

exceeds 500KB.
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Table 4.2: Utilized sensors and collected features

Sensor/Feature Explanation
Accelerometer We collect acceleration force along the x, y and z axis in 5Hz

sampling rate.
Gyroscope We collect rate of rotation around the x, y and z axis in 5Hz sam-

pling rate.
Ambient air pressure We collect air pressure in 5Hz sampling rate.
Ambient light We collect ambient light in 5Hz sampling rate.
Screen touches We collect screen touches as binary (touch: 1, no touch: 0)
Ambient audio amplitude We collect ambient audio amplitude (in decibel) in raw, max, min

and avg. values in 2Hz sampling rate using the microphone.
Time We collect time as in 24 hours scale every hour and in 4 phase of

the day as morning, noon, evening, and night
Battery level We collect battery level in a scale 1-100 by listening every battery

change event.
Activity We collect user activities every 30 sec using Google Activity

Recognition API [55]
Screen brightness We collect screen brightness in 1Hz sampling rate.

Android smartphones have built-in sensors that measure motion, orientation, and various en-

vironmental conditions. These sensors are capable of providing raw data with high precision and

accuracy, and are useful in many situations (e.g., monitoring three-dimensional device movement

or positioning). In our proposed system, to be able to predict users’ brightness preferences in real

time, we collect data from various sensors using default Android APIs. Table 4.2 lists the selected

sensors/features and sampling rates used for our models. We find that these features give more

insight about users’ desired brightness settings. We explore the relationship of these features and

brightness preferences in Section 4.4. As shown in the table, we collect motion data, audio records,

and touch events from the target smartphones. All of these features can be monitored programmati-

cally with basic user permissions (i.e., microphone, body sensors, etc.) that can be verified through

our application(s). Since collected features are in different sampling rates, we also do re-sampling

to make them all in 5Hz rate. We should note that, we could also collect some other features like

screen frame per second and complex touch events (i.e. size, 2D coordinate, etc.) from logcat [10]

in the target phones. However, since monitoring logcat requires super-user permission (i.e., root

access), we do not include them in our collection set.

We use MonkeyRunner [98] tool in Android to measure overhead of the logger application.



www.manaraa.com

90

MonkeyRunner tool provides an API for writing programs that control an Android device or em-

ulator from outside of Android code. We specify commands in Python scripts and sent them to

two different Android phones (a Nexus 6P and a Samsung Galaxy S7) through adb shell [13]. We

create the same workloads (same touch events, same run-times, etc.) and test each sensor/feature

combinations (comparing metrics with and without the sensor/feature) for three minutes on three

different applications: a CPU-intensive game, CPU-moderate video, and a CPU-low animation

application. We observe that our background service is lightweight mainly because of the small

frequency of data collection. We observe logger application increases CPU utilization by no more

than 3% on the smartphones. Additionally, activating the logger increases energy consumption by

2.8% on the target phones on average. With the given sampling rate, microphone in audio feature

consumes 80-100mW more power on average, while touch, motion, and environment sensor col-

lection overhead stays in the 10-30mW range. In addition, we collect current and voltage values at

2Hz sampling rate to calculate power consumption of the smartphone (note that the reported power

levels are for the whole phone).

Figure 4.4: (a) Cumulative brightness records and (b) Relative absolute error rate of user-
independent model in varying user sizes.

4.2.2 First User Study: Creating User-Independent Model

We release two versions of the logger application to the market (one version for each user study).

In the first study, we conduct user tests with real users in order to develop a user-independent

model. Participants for this study are gathered through job platforms (i.e., Amazon Mechanical

Turk and MicroWorkers), fliers advertising the study, and word of mouth.



www.manaraa.com

91

User test begins when the logger application is installed (from the Google Play Store) and

started by opening its GUI on the target smartphone. In this first version of the application, we

do not make any dynamic brightness changes; we only collect brightness preferences along with

the sensor data. To achieve this, every 30 seconds we overwrite screen settings to turn on default

(adaptive) brightness settings. Therefore, we constantly force screen brightness to be set automat-

ically by default scheme and monitor users’ manual brightness changes through the sliding ball

(GUI of the application) on the screen.

In the first user study, we use 15 users who have the largest logged activity. Please note that this

does not mean users with the longest amount of log time, it means users whose smartphone logged

the longest (i.e., longest “screen on” times). The cumulative log data represents over 140 hours

of real user activity. Figure 4.4(a) shows the cumulative distribution of the observed brightness

records. As shown in the figure, we observe that brightness is under level 50 almost 60% of

the time. In order to form the training data, we balance all brightness preferences by randomly

downsampling the higher occurred settings in each brightness level.

From 15 users, we accumulate 10 random users’ data to build user-independent model. We

specifically choose 10 users’ data in order to prevent any individual bias and/or overfit in the

prediction model. However, in order to see the effect of group sizes on the user-independent

model’s accuracy, we build the user independent model with different user groups. Specifically,

we formed the training data with all unique combinations of groups with 3, 5, 10, and 15 users out

of total 15 users.

We find that REPTree algorithm in Weka-machine learning tool [139] provides highest accu-

racy with a small overhead for the predictions. We use 10-fold cross validation to prevent training

and testing data overlap. Figure 4.4(b) shows the mean absolute relative error rates and mean ab-

solute errors of the user-independent models with varying user sizes. Note that the model uses the

features listed in Table 4.2 as its input.

As seen in the figure, error rate increases as the group size increases. This is intuitive: since

models are built from each user’s individual sensor data, unique user behavioral patterns can be
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a good indicator to predict brightness preference for users in smaller size groups. However, it is

also possible to see an overfit in the models with the smaller sizes. When the group size increases,

these unique patterns become less distinguishable and results in increase in the error rates. Having

said that, when we use all users (15 users) to build the user-independent model, error rate is still

low (less than 6%). This shows that, although there are individual differences in collected sensor

values, there are still common patterns where users’ sensor values show similarities based on their

brightness preferences. We explore such common patterns and user-specific differences in Section

4.4.

Figure 4.5: Average absolute mean error rates (sorted in red bars) for brightness predictions of the
models and average power consumption (blue bars) of logger application for each sensor/feature
combinations.

4.2.3 Accuracy of the User-Independent Model With/Without Each Sensor

While studying the user-independent model, we also tested different sensor combinations using the

methodology described in Section 4.2. Specifically, we were interested in discovering the accuracy

and overhead of our model with all different sensor combinations.

Figure 4.5 shows the importance of each sensor in the models and their overhead to the phone.

In the figure, y-axis shows the sensors and features tested to build models, top x-axis (blue bar)

shows the logger-application’s power consumption on the phone and bottom x axis (red bar) shows

the error rates of brightness predictions. In the figure, “Motion” stand for motion sensors, “Press”
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stands for pressure sensor, “Batt” stands for battery level, “Light” stands for ambient light, and

“Audio” is the ambient noise in decibel collected from microphone.

As shown in the figure, we can achieve the best accuracy when we include all features (Motion,

Press, Audio, Batt, Light, Time, and Touch) in our prediction models with a negligible power cost:

we observe the average power consumption as 162mW. Moreover, we observe that microphone in

audio feature consumes relatively more power ( 80-100mW) on average compared to other sensors.

On the other hand, adding audio feature also increases accuracy considerably (by 4.02%) when

included with other sensors. We should also note that, as shown in Table 2, we tested “Activity”

feature in the model as well. However, we observe that 96.3% of the activities recorded as “still”.

Thus, when we include activity feature, we do not observe any improvement in our models, hence

we do not include it in our user-independent model.

Figure 4.6: (a) Cumulative brightness change counts in brightness levels and (b) Cumulative bright-
ness change counts at different battery levels.

Figure 4.7: (a) Cumulative brightness change counts during the day and (b) Relative absolute error
rates and absolute mean error of change prediction model in varying time windows.
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4.2.4 When Do Users Change Their Brightness?

As described in the previous section (Section 3.2), in our first study, we collect brightness changes

through the sliding ball on the screen. We record each touch and drag movement of the ball on

the screen in order to see (i) how many times users perform manual brightness changes and (ii)

what is the scale of the brightness change (in the 0 to 255 brightness level range). We observe that

all our participants used the sliding ball to change the brightness during the studies. While some

users become less dissatisfied with the default scheme’s settings and change brightness relatively

less frequently (minimum number of changes we observe is 2.0 changes per day of usage), others

change brightness far more frequently (maximum number of changes we observe is 29.1 changes

per day of usage). This also shows the insufficiency of default scheme on controlling brightness

and the need for user-aware models on brightness settings. Note that, in the collected data, we do

not count a movement in the sliding ball as a brightness changes unless its movement corresponds

more than 10 level brightness change (out of the possible 255 levels). The analysis of the collected

sensor data and brightness changes reveal the following observations:

• As shown in Figure 4.6(a), almost half of the changes occur when the default scheme set

the brightness between 0 and 100. Yet, as shown in Figure 4.4(a), users rarely use their

phones in higher brightness levels; the fraction of time they spent over 150 is less than 10%.

However, the fraction of changes that are made in this range is over 25%. This shows that,

whenever users are in higher brightness levels, they are more likely to do a brightness change.

Moreover, we observe that 81.8% of the changes in the 150-255 range are to decrease it (the

average reduction is 150 levels), while in the 0-50 range, 66.6% of changes are to increase

the brightness (the average increase is 108 levels).

• Similarly, we count screen touch events. These touch counts represent basic user interaction

with the phone. Not surprisingly, most of the touches occur when the phone is in the 0-

50 brightness range. For the 0-50 brightness range, we observe a roughly 1:28 ratio of

brightness changes to touch counts, meaning that roughly in every 28 touches, users change
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their brightness. This ratio is 1:12 in the 150-255 range.

• Over 60% of the brightness changes occur when the remaining battery is less than 50%

and most of the changes occur when the remaining battery is between 40% and 45% (Fig-

ure 4.6(b)). These results show that brightness changes are slightly more frequent when the

battery is running out, yet there are still significant amount of changes when the remaining

battery level is high.

• As shown in Figure 4.7(a), users do not change the brightness frequently during the morning

or night: about 40% of the changes occur between 12pm and 8pm and similarly about 40%

of the changes occur between 8pm and 12am.

• Finally, we observe that overall 57.6% of the changes are to decrease the brightness with an

average change of 76.6 levels; while the rest (42.4%) is to increase the brightness with an

average increase of 74.6 levels.

Moreover, we build a prediction model to predict users’ brightness changes. Specifically, we

are interested to see how good we can predict the brightness change times with the collected sensor

data. If we can predict the time users change their brightness prior to the user request, we can use

this prediction for a finer-grained control on brightness settings to provide better user experience.

In order to avoid sparsity on manual changes, we use the data of 15, 10, 5, 3, 2, and 1 seconds

before the user has requested a change. Again we find that REPTree algorithm in Weka-machine

learning tool [139] provides highest accuracy with a small overhead on the predictions. Similarly,

we use 10-fold cross validation to prevent training and testing data overlap. Figure 4.6(b) shows

the mean absolute relative error rates and mean absolute errors of models in varying time windows.

Although error rates are low in all windows (<8%), taking 15 sec time window gives the lowest

error rate and lowest mean absolute error.
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Figure 4.8: Tested 3 brightness control models (default scheme, user-independent, user-dependent)
in the second user study.

4.2.5 Second User Study: Building User-Dependent Models and Controlling Brightness in

the Wild

After creating the user-independent model in the first user study (Section 3.2), in the second user

study (i) we build user-dependent models for each user on-the-fly, and (ii) let users test their own

(user-dependent) models, the user-independent model, and the default scheme for 6 days duration.

For the second user study, we release the second version of the application on Google Play

Store. In this version, we first pre-load the user-independent model (created in the first user study

with 10 users’ cumulative data offline). Additionally, we update our application to build user-

dependent models from the user’s accumulated data online in order to make brightness predictions

by using only the user’s data. We should note that, we release this version as a new application

with a different package name and icon in the Google Play Store, so that the users in this study are

different from the 10 users in the first version, whose data is used to build the user-independent

model.

User test begins when the logger application is installed (from the Google Play Store) and

started by opening its GUI on the target smartphone. Thus, similar to the first user study, during

the experiment, users use their own phones as they typically use. In the second user study, users

test their user-dependent model, the user-independent model, or the default scheme each day in a

random order. We made sure that all users test the two models and default scheme exactly twice.

Thus each user experiment takes 6 days in total. (Figure 4.8 shows the tested models in the study):
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Algorithm 2 Pseudo code for predicting and setting screen bright-
ness programmatically in real time.

1: procedure LOGGER AND BRIGHTNESS SETTER

2: Make calls to classes to log sensor data
3: change− tested−model()
4: predict− brightness− and− set()
5: sleep for 3 sec
6: function CHANGE-TESTED-MODEL()
7: if last time model changed − current time < 24hours then
8: return

today’s model = get new model to test
9: if today’s model is user-dependent model then

10: build a new user-dependent model from all user data
11: function PREDICT-BRIGHTNESS-AND-SET()
12: if today’s model is user-independent model then
13: prediction = get user-independent model prediction
14: if today’s model is user-dependent model then
15: prediction = get user-dependent model prediction
16: if prediction is same for 30 sec and then
17: prediction − current brightness < 10
18: current brightness − = 3

19: else current brightness = prediction

• When the default model is selected, the application does not make any predictions and leaves

the brightness control over to the default scheme. Note that the default scheme may be

different based on to the Android version of the user.

• When the user-independent model is selected, application uses the pre-loaded user-independent

model to predict and set brightness on the target phone.

• Every time user-dependent model is selected, a new user-dependent model is built from all

the collected data of the user using the same methodology explained for the user-independent

model (first user study). Therefore, unlike the user-independent model, which is loaded

offline and is static during the study, user-dependent models are rebuilt dynamically using

the accumulated data. Algorithm 2 provides a detailed pseudo-code used to predict and set

brightness programmatically in real time for both models. While forming the training data
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for user-dependent model on the target phones, we again randomly downsample the more

frequent brightness settings in order to balance the data. On both tested models, predictions

occur every 3 seconds

In order to benefit from human eyes’ insensitivity to small gradual changes in brightness [119,

147], we also implement a gradually dimming mechanism when controlling the brightness. The

aim of this implementation is to save power without impacting user satisfaction. When the required

brightness is between level 50 and 255, if the previous brightness prediction is the same as the

current one for 30 seconds, we dim the brightness slowly (3 level decrease every 30 seconds).

We set the maximum brightness reduction to 10 in order to avoid any user dissatisfaction. For

example, if predicted required brightness is 100 for a long duration, the brightness is set to 97 after

30 seconds, to 94 after a minutes, etc., until the brightness level of 90 is reached. We keep the

brightness at 90 as long as the predicted required brightness level is 100.

Finally, we also ask users’ overall satisfactions of the phone’s brightness settings every 6 hours

through a pop-up questionnaire on the screen. In the questionnaire, users answer the question “How

are your phone’s brightness settings today?” from a 5-scale radio style selection: 1 is the worst, 5

is the best. The aim of these questionnaires is to analyze models’ impact on user satisfaction. We

specifically ask the questioner 4 times in a day in order to get as much user report as possible from

a model’s performance on brightness setting.

4.3 Results

In this section, I present the results acquired from our second user study, where users test their

user-dependent models, the user- independent model, and the default scheme on controlling their

phone’s brightness. In total, we receive data from 47 users. Unfortunately, not all of our par-

ticipants use the application adequately (not long enough) nor give enough inputs to analyze (a

common issue with conducting in-the-wild tests with real users). Once we filter out the users who

don’t give inputs to pop-up questionnaires and who test each model less than twice, we end up

with 21 users whose results we present below.
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Figure 4.9: Average power consumptions (in mW) (top) and relative average power consumptions
for each model for 21 users (bottom).

Figure 4.9(top) plots the power consumption values of the three tested models for our 21 users.

Since usage characteristics and application selections vary, we observe a large variation between

power consumption levels of each user. In order to better analyze the differences of the models, we

normalize them by calculating their relative change based on the default value for each user using

the formula:

relativechng = (Powerx − Powerdefault)/Powerdefault

,

where x represents all three models for the user. Figure 4.9(bottom) shows the relative aver-

age power consumptions of the three tested models for all users. As shown in Figure 4.9, default

scheme’s power consumption is highest in 9 out of the 21 users. In 15 out of 21 users, the default

scheme exhibits higher power consumption when compared to the user-dependent model. Overall,

our models are successful in saving power: on average, user-independent and user-dependent mod-

els save 5.16% and 7.65% system power, respectively. We also observe the maximum power sav-

ings are 36.5% and 33.7% (user20) for user-independent and user-dependent models, respectively.

Please note that these power savings are system level and acquired by predicting users’ brightness
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Figure 4.10: Average user satisfaction reports (top) and relative user satisfaction reports for each
model for 21 users (bottom).

preferences along with a naive dimming mechanism with dimming limit up to 12 brightness level.

However, it is possible to make dimming mechanism more aggressive with different thresholds to

increase power saving.

Figure 4.10(top) plots the average satisfaction reports gathered from the pop-up questionnaires.

Similar to Figure 8(bottom), in Figure 4.10(bottom), for each user, we calculate relative change on

satisfaction reports based on their default model’s report. As shown in the Figure 4.10, there is a

large variation in user satisfaction levels as well. While some users are more sensitive to brightness

changes and can clearly distinguish the three models (e.g., user18), others cannot distinguish any

difference (e.g., user6). However there exist only 2 users (user2 and user7) who rated the default

model better than other two models. On average, the user-dependent model outperforms the user-

independent model and default schemes: user-independent and user-dependent models increase

user brightness satisfaction by 6.03% and 15.77%, respectively, when compared to the default

scheme.

In order to analyze the power consumption and satisfaction results further, we performed

ANOVA [19] test on the normalized values to see how the results of these three models differ

from each other. Table 4.3(a) shows the p-values of both power and satisfaction comparisons. As

shown in the Table 4.3(a), p-values for power and satisfaction comparisons are 0.0772 and 0.0494,
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Table 4.3: Statistical difference comparisons of power consumptions and satisfaction reports. (a)
Results of ANOVA tests. (b) Results of post-hoc pair-wise t-test p-values.

which indicates that results are significant and the means differ (for 0.1 and 0.05 significant levels

respectively). Since p-values are significant, in order to understand how each model differ from

one other, we then conduct post-hoc pair-wise t-tests [102]. Table 4.3(b) shows the measured p-

values in the t-tests again for power and satisfaction comparisons. As shown in the table, for both

comparisons, the p-value for the user-dependent versus default model comparison is significant,

meaning that, with the user-dependent model we can indeed increase user satisfaction and also

save power.

There are two reasons behind the overall power savings and increased user satisfaction. First,

when we look at all the users’ data, we observe 6831 manual brightness changes in total; 51.9%

of them occur during the default scheme, 33.7% during the user-independent model, and the rest

(14.4%) during the user-dependent model controlling the brightness. This shows that proposed

models control brightness better than the default scheme in terms of user experience. Second, we

observe that 63% of these manual changes are to dim the screen brightness: on average, users

reduce the screen brightness by 72 levels (out of 256) when they dim it and increase it by 68

brightness levels when they brighten. This shows that default scheme sets the screen unnecessarily

bright on average, which causes more power consumption.

4.4 Correlation of Sensor Data and Brightness Settings

In this section, I present the analysis of the relation between sensor data and users’ brightness pref-

erences in more detail. Specifically, when studying the relation we were interested in seeing how
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Figure 4.11: (a) Total information gained from each sensor group. (b) Cumulative brightness
records for all users along with the red dash-lines separated 5 brightness ranges.

the collected sensor data correlates with the brightness settings. We use all users’ data (47 users

with 23 different smartphone models) to find the relation with the given brightness preferences. I

should also note that, in our analysis, we only consider “screen on” times, since the times when

the screen is turned off would not reflect users’ brightness preferences.

As described in Section 4.2.2, we use REPTree algorithm in our models. In the algorithm,

predictions were made based on the branches formed by the information gained from each fea-

ture. To be able to see how much information is gained from each feature, we extracted them

using Weka-tool’s “InfoGainAttributeEval” evaluator from Attribute Selection [136]. The table in

Figure 4.11(a) shows accumulative information gain of each feature group. To get a clear view

in the table, we accumulated same set of sensors and grouped them in the row (for example, gain

from accelerometer and gyroscope sensors are combined in the “motion” sensors group). In the

following sections, I discuss each sensor group individually.

Figure 4.11(b) shows the recorded cumulative distribution of brightness settings from all users.

Similar to the Figure 4.4(a), we observe that about 60% of the recorded brightness levels are less

than 100. Note that the distribution of the screen brightness presented in Figure 4.11(b) and Fig-

ure 4.4(a) are similar (dimmer screen brightness is more common in both datasets). However,

the exact distributions are slightly different: in the new (more extensive) dataset, we observe ap-

proximately 20% of the time spent in brightness setting of above 150 (whereas this ratio was

approximately 10% for the first dataset).
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To make the analysis simpler, we group the sensor data under five brightness ranges as indi-

cated with red dash-lines in Figure 10(b) from low to high as 0-30, 30-60, 60-100, 100-150 and

150-255. Each range contains roughly the same proportion (20%± 2%) of the data. In the follow-

ing subsections, we analyze the relation of the sensor data and brightness settings in more depth

according to this categorization.

Figure 4.12: (a) Distribution of accelerometer distances for each brightness range and (b) Averages
of accelerometer distances for each brightness range.

Figure 4.13: (a) Distribution of gyroscope distances for each brightness range and (b) Averages of
gyroscope distances for each brightness range.

4.4.1 Motion Sensors

Motion sensors are the most information gained feature as shown in Figure 4.11(a). We collect

acceleration force along the x, y, and z-axis and the rate of rotations around these axes using the

accelerometer and gyroscope sensors on target phones. Accelerometer and gyroscope sensors are

commonly used in motion and rotation detection. In order to get a clearer view of these raw three

axes, we calculate the distance of them using the Pythagorean formula:
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distance =
√
(x2 + y2 + z2)

where x, y and z correspond to either accelerometer or gyroscope axes. Figures 4.12(a) and

4.13(a) show the distribution of calculated distances from the collected accelerometer and gyro-

scope sensors, respectively, for each brightness range. As depicted in the figures, the range and

variation become smaller as the brightness level increases. The standard deviations for each bright-

ness range (starting from 0-30) are 0.74, 0.72, 0.65, 0.64 and 0.64 for the accelerometer data and

0.53, 0.58, 0.50, 0.48 and 0.43 for the gyroscope data, respectively. In Figures 4.12(b) and 4.13(b),

we show averages of these distances for each brightness range. Similar to the distribution figures,

we observe drops in the average values as the brightness level increases. Assuming that, users

require better brightness settings when they perform activities such as reading, playing, etc., it is

possible that they may prefer higher brightness levels. Since these activities require user’s attention

on the screen, we see more stable movements in 3D physical actions. On the contrary, we observe

higher variance and more scattered motion data when brightness is in lower levels: it is possible

that users require lower brightness levels when they do activities that do not require constant focus

on the screen (e.g., checking time, notifications etc.).

Figure 4.14: (a) Observed ambient air pressure (in mbar) means and (b) Average operating battery
level for each brightness range.
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Figure 4.15: (a) Distribution of observed audio amplitude values and (b) Averages of observed
audio amplitude values for each brightness range.

4.4.2 Ambient Air Pressure

We collect ambient air pressure through the pressure sensor [58] in the target phones. Pressure

sensor is one of the sensors that became popular for activity recognition in recent years [55]. It

is shown that especially in complex activity recognition tasks, pressure sensor increases accuracy

significantly [59, 87, 96] due to high precision barometer sensors on smartphones [61] (measured

relative accuracy is ± 1 meter). Figure 4.14(a) shows the observed ambient air pressure averages

for each brightness range. Similar to the motion data (Figures 4.12 and 4.13), we observe a strong

negative correlation between the ambient air pressure and brightness levels. This relation can be

explained by the assumption that users interact with their phones and/or do activities that require

attention in home/office environments (e.g., high floor environments) more, rather than outside.

Given that an increase in altitude decreases air pressure, we observe lower ambient air pressure in

higher brightness levels.

4.4.3 Battery Levels

We collect battery levels of phones using Battery Manager API [57] at 1 Hz rate. Figure 4.14(b)

shows the observed battery level averages for each brightness range. As shown in the figure, not

surprisingly, in general we observe a positive correlation between the brightness levels and battery

level averages: as the battery level increases, brightness level increases as well. We observe the

maximum battery average in 150-255 brightness range. It shows that when users have high battery
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levels, they use their phones in higher brightness levels more. However, when they have lower

battery levels (less than 52) they are more likely to use their phones in lower brightness levels due

to possible battery concerns.

4.4.4 Ambient Audio Amplitudes

We collect ambient audio amplitude (in decibel) from our users at 2 Hz sampling rate using An-

droid Auido Record library [56] with the microphone. Most of the target devices have built-in

MEMS microphones, which enable ambient noise canceling to improve input voice quality [42].

In our studies, we observe the audio noise reaches up to 90 decibel. Along with the raw records,

we also collect their statistics such as mean, maximum, and minimum in 3-second time windows.

In Figure 4.15(a), we plot distribution of the raw audio records for each brightness range. The

standard deviations of each brightness range (starting from 0-30) are 15.15, 16.31, 19.09, 25.39,

and 31.88, respectively. In Figure 4.15(b), we plot the mean values of the raw audio records for

each brightness ranges. As depicted in the figures, there is a positive correlation between ambient

audio records and brightness levels. We hypothesize a similar intuition with motion data. When

users perform tasks that require interaction with the screen (e.g., playing a game, video-chatting)

they need higher brightness levels. On these activities, it is also expected for users or phone to be

noisier (e.g., game music or voice), which leads to higher ambient amplitude levels.

Figure 4.16: (a) Fraction of logs with touch events and (b) Total screen touch counts for each
brightness range.
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Figure 4.17: (a) Distribution of observed ambient light values for each brightness range and (b)
Averages of ambient light values for each brightness range.

4.4.5 Screen Touch Counts

We collect screen touch counts from the target phones. These touch counts represent basic user

interaction with the phone. Figure 4.16(a) shows the fraction of logs with touch events and Fig-

ure 4.16(b) shows the total touch counts for each brightness range. As shown in the figure, we

observe a positive correlation with the brightness levels and screen touches: as the brightness level

increases touch counts also increase. In fact, we observe the most touches in the 150-255 range.

There are two possible reasons behind this. First, similar to previously discussed sensors: users

require higher brightness levels when they perform activities such as searching, playing, etc. Since

these activities involve active user interaction, we see higher touch counts on higher brightness

levels. On the other hand, when users do activities which do not require active user interaction,

it is possible they are comfortable with lower brightness levels. Second, as discussed in Section

4.2.4, users change their brightness more during higher levels, which causes increased number of

touches on the screen.

4.4.6 Ambient Light

We collect ambient light level (illumination) in the environment using light sensors [54] on the

target phones at 5Hz sampling rate. Ambient light values are collected in lx (lux) unit generally in a

range between 0 to 9999. Figure 4.17(a) shows the distribution of the ambient light values for each

brightness range and Figure 4.17(b) shows their averages. Not surprisingly, we observe a positive
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correlation with the ambient light and brightness settings. As discussed earlier in Section 2, in order

to create the desired contrast ratio on the screen, ambient light is an important indicator. However,

as shown in Figure 4.11(a), we observe that ambient light sensor is the fifth most information

gained feature in our models among other sensors and apparently there are other sensors that can

give more insight on users’ brightness preferences.

As we explained in Section 4.3, we observe 6831 manual brightness changes across all our

logs. The majority of the changes occur during the default scheme operation. If a user was already

satisfied with a model, no brightness changes would have been observed. As our experiments

described in the previous section show, the inclusion of other sensors can improve the accuracy

significantly and reduce the dissatisfaction compared to the default mechanism that only uses the

ambient-light sensor.

4.5 Discussion

User selection. As discussed during the introduction of Chapter 4, all of our users are partici-

pants who downloaded our application(s) from Google Play Store just like any other application.

Although it is possible to see some similarities (or differences) in user-dependent models feature

selections based on users’ age, gender, or being tech savvy or not categories, due to privacy con-

cerns we do not collect personal information of our users. However, based on Google’s statistics,

our users are from 10 different countries where majority of them are from United States, India,

Germany, and South Africa.

Android Pie. As discussed in Section 4.1.3, ambient-only solution has limitations on determin-

ing the preferred brightness level. In order to address some of these limitations, current Android

OS provides a manual brightness slider even with the adaptive brightness feature turned on, claim-

ing that manually overriding the brightness will help the adaptive brightness feature to determine

the correct offset for users’ preferences. However, in our user studies, we observe that there is a

good mixture of both increasing and decreasing manual brightness changes from the same user

even in the same ambient light. Thus, the users’ brightness preference is not simply a matter of
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a wrong offset but indeed a variable dependent on other factors (e.g., environment and activity

conditions). Moreover, Android recently introduced a new version, “Pie” (phones with API level

28 and higher in Table 4.1), where it is claimed that a personal brightness preference is utilized.

However, in our user studies, we observe that the brightness change patterns do not change across

users (between our 10 Pie and 37 non-Pie users). It is possible that incorporating user preferences

can help creating user-aware mechanisms on controlling the brightness, however, lack of utilizing

other sensors on brightness settings still limits the capabilities. In fact, when we compare satisfac-

tions of Pie users on tested models, we observe that user-independent and user-dependent models

increase satisfaction by 0.002% and 13.5% compared to the default scheme (i.e., Pie), respectively.

The average satisfaction levels are 3.84, 3.85, and 4.36 for the default, user-independent, and user

dependent models, respectively. Further, we also compare the power consumptions of the tested

models on Pie users and observe average power consumption reduction of proposed models are

18.9% (user-independent) and 17.9% (user-dependent) compared the Pie. Hence, we can improve

the user satisfaction and reduce the power consumption drastically on the state-of-the-art bright-

ness control mechanism.

Energy savings’ effects on user satisfaction. There is a tremendous effort in the smartphone

industry to find solutions to extend the battery lifetime. Designers have reverted to architectural and

system-level optimizations to keep energy consumption down. Despite the importance of end user

in smartphones, how much these efforts affect user experience is still not clear. Any improvement

in performance or a new hardware feature is easily observable and can have a direct effect in

user experience. However, energy savings’ effect is non-trivial and (possibly) has influence only

in the long run. Thus, it is challenging to measure and factor its effects in instantaneous user

experience/satisfaction. In order to get an insight of how much battery life is important for users,

we conduct a survey in Amazon Mechanical Turk [115] (mTurk) with 500 users. In the survey, we

asked users to rank the most important feature they look in their smartphones. We observe more

than half of the users (53%) choose battery over any individual component. Other online surveys

also reflect similar results [49, 51, 17]. Battery lifetime is certainly an important aspect of user
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experience in smartphones, but to the best of our knowledge there is no work on measuring its

quantitative impact on user experience. Although we do not know energy saving’s instantaneous

effect on user experience, due to its importance to users, it is reasonable to expect that our system

would be rated even higher if the users were informed about the power savings their phones attained

compared to the default scheme.

4.6 Summary

In this project, I discuss our studies on controlling smartphone screen brightness. Specifically, we

propose a system to control brightness on smartphones. The system utilizes motion and environ-

ment sensors, audio records, and screen touch events to predict users’ preferred brightness in real

time.

We evaluate the proposed system by conducting two user studies in the wild. For both user

studies, we release a logger application to Google Play Store. In the first study, we develop a user-

independent model by using data gathered from 10 users. In the second user study, we develop

user-dependent models for each user online and make participants use their phones while bright-

ness is controlled by their (own) user-dependent models, the user-independent model, and the

default scheme. Every 6-hour we collect overall display satisfaction through a pop-up questioner.

Our results show that compared to the default scheme, the user-dependent and user-independent

models increase display satisfaction by 15.77% and 6.03% on average, respectively. Moreover,

in the proposed system we implement a gradually dimming mechanism in order to save power

especially in long usage scenarios. Our results show that proposed system saves 7.65% and 5.16%

system level power with user-dependent and the user-independent models, respectively. Further,

we present in depth analysis on the correlation between collected sensor data and the brightness

preferences.
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DO USERS REALLY CARE ABOUT ALL THESE EFFORTS? QUANTIFYING THE

IMPORTANCE OF ENERGY SAVINGS ON USER SATISFACTION

As I already alluded in earlier chapters, smartphones are a ubiquitous part of modern society.

While smartphones were originally capable of only basic applications, smartphones today are ca-

pable of performing a wide variety of tasks such as messaging, streaming videos, browsing the

Internet, navigation, etc. The increasing capability of smartphones typically comes with the cost

of increased energy consumption. Smartphones are battery driven to allow the highest degree of

freedom and the battery has to empower all the new features and applications on it, in many cases

for a long duration.

Excessive energy consumption of new features is limiting the evolution of smartphones as the

improvement of battery capacity is quite moderate compared to the increase of the complexity due

to new hardware and services [116]. In fact, as batteries can store a fixed amount of energy, the

operational time a user is able to use its phone within one charging cycle is limited as well. There

is a tremendous effort in the smartphone industry to find solutions to extend the operational time.

Using batteries with more capacity could be a trivial solution, but unfortunately their technological

evolution does not follow the trends dictated by Moore’s law: the battery capacity doubles only

roughly every decade.

Despite the importance of end user in smartphones, how much of the energy saving efforts

effect user satisfaction1 is still not clear. Any improvement in performance due to changes in

software or hardware system is easily observable and can have a direct effect in user experience.

However energy savings’ effect is not-straightforward and typically has an influence in the long

run. Thus, it is challenging to measure and factor its effects in instantaneous user experience. If

1Throughout this chapter, user satisfaction is defined as the overall subjective satisfaction rating provided by the
user for the device they are using.
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users knew their smartphone’s current energy savings, it is possible that their experience (or at

least their perception of experience) may be different. They may even be willing to give sacrifices

if they lead to more power savings. Similarly, if manufacturers knew their efforts’ effects on user

satisfaction, they can focus more (or less) on extending battery life time.

In order to get an insight on the importance of battery life for users, we conduct an online survey

with 500 users (as I already discussed in Section 4). In the survey we want users to rank the most

important feature they look in their smartphones. We observe more than half of the users (53%)

choose battery over any individual component (i.e. camera, operation system, etc.). Other online

surveys also reflects similar results and show battery is even more important for younger users

[49, 51, 17]. Battery lifetime is certainly an important aspect of user experience in smartphones.

However, to the best of our knowledge, there is no work on measuring or investigating its effect to

user satisfaction quantitatively.

In this project, we study the relation between energy savings and user satisfaction by conduct-

ing two user studies with real users. First, we conduct an Amazon Mechanical Turk (mTurk) study

with 200 smartphone users. The aim of this study is to see the energy savings’ effects on user

satisfaction. Thus, we compare user ratings in same conditions under different reported energy

savings. In this study, we ask each participant to watch the identical video of a game play and an

Instagram video (recorded on a smartphone) multiple times and rate their satisfactions about the

screen brightness of the video in a 5-likert scale. During these multiple runs, we randomly choose

one video and after the participant finishes the video, we display (report) a random energy saving

level before asking them to rate their satisfactions. For other videos, we do not report anything be-

fore we prompt them for their satisfaction rating. Our results show that, user satisfaction increases

if users are notified with the energy saving, even if the energy saving is minor: on average we

observe 5.7% increase in user satisfactions when energy savings are reported in the videos. The

details of this study are provided in Section 5.1.

Next, we conduct our second user study where we go into the wild in order to understand

the energy savings’ effect on users’ daily usages on their own smartphones. For this study, we
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develop a light-weight logger application and make it available on the Google Play Store. In the

application, we design 5 different energy saving scenarios where the phone adopts and runs one

for each day randomly. In the scenarios, in order to save energy, we drop screen brightness of the

phone at varying levels and then either report or do not report the energy savings to users. Users

rate their overall satisfaction everyday multiple times on each scenario. Similar to the first user

study (mTurk study) we observe user satisfaction increases significantly when users are notified

on the energy savings, even though the sacrifice on the screen brightness may be maximum. On

average, we observe the highest user satisfaction (17.8% increase) by dropping the brightness 40%

and reporting the saved energy. Moreover, we develop a prediction model for the user ratings and

show 86.6% accuracy on predicting user satisfaction with the reported energy savings.

Overall our contributions can be listed as below:

• We show that user satisfaction increases significantly if users are notified about the energy

the phone achieves with the power saving methods.

• We quantify and present detailed analysis on the relation between energy savings and user

satisfaction.

• We build prediction models and demonstrate that user satisfaction can be predicted accu-

rately with the reported energy savings.

The rest of the chapter is structured as follows. In Section 5.1, I introduce our first user study

and discuss its results. In Section 5.2, I explain our second (in-the-wild) user study, our logger

application and present its result. I also describe the prediction model and correlation between

satisfaction reports and collected metrics in Section 5.3.

5.1 First User Study: Mechanical Turk Study

In this section, I describe our first user study, which is conducted on the Amazon Mechanical Turk

(mTurk) platform with 200 participants. The aim of this study is to see the effects of reported
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Table 5.1: Order of video play and their notifications displayed to users afterwards.

Video Order Notification Type Displayed notification

First Default video ”Note that, brightness of this video is set to default. Based on
this video, you will rank next two videos’ brightness settings.“

Second or Third Report Energy Saving ”if you were watching this video on a typical smartphone, it would
(Randomly chosen) require {random selection between 2-12}% less energy overall and hence

increase the battery life.“

Figure 5.1: Typical order of Angry Birg game play and Instagram videos. Note that The order of
applications and energy savings are reported vs not reported are selected randomly.

energy savings on user satisfaction. In the following subsections, I first explain our methodology

and then discuss the results.

5.1.1 Methodology

We record 20 seconds of the screen during the use of two applications on a Huawei Nexus 6p

smartphone. We selected the applications from the list of most common applications [141]: a game

play of Angry Bird [18] and screen scrolling of Instagram [47]. We choose these two different type

of applications specifically a) to design a user study as short as possible in order to keep the users

attention high and b) to investigate how application (content) affects the relation between energy

savings and user satisfaction. We conduct our mTurk study from our server by uploading the videos

to YouTube [53] in order to limit any video loading time inefficiency.

Users start watching each application’s recorded video in random order. Once the application

is selected, we make users watch the same video 3 times before going to the other application.

Thus, users watch total 6 videos (3 times for game play video and 3 times for Instagram video).

For each application, after watching its video first time, we display a notification on the screen

which indicates that the video’s brightness is set to default settings. Although users watch the



www.manaraa.com

115

Table 5.2: (a) Average user satisfactions for each video, and (b) observed p-values from t-tests of
each video’s satisfaction ratings

Table 5.3: Proportion of users and average reported energy savings of users categorized by the
changes of satisfaction ratings between reported and not-reported videos.

same videos, we do that to make users set a calibration for their expectations for the next videos.

In one of the next two videos, after users watch the video, we display (report) a random energy

saving level, while for other video we do not report anything. The order of when energy savings

are reported are selected randomly, in other words, after the first default video, we may report an

energy saving or the energy saving is reported on the third play. The reported energy saving is

a random number between 2% to 12%. These thresholds (i.e., reported energy saving levels) are

determined by dropping screen brightness up to 30% in varying brightness levels and measuring

the average energy consumption off-line on the selected applications (Angry bird game play and

instagram). Figure 5.1 visualizes a typical video ordering. Table 5.1 also shows the video order

and their notifications displayed to users after the videos. Once a video ends, we display a 5-

likert radio-style chart (from 1 to 5, where 1 is very bad and 5 is very good) to collect subjective

user satisfaction on the brightness of the videos. Thus, we compare the reported energy savings’

effect on subjective user ratings under same conditions. We should also note that, in this study, we

rename the videos and present them in different web pages in order to prevent users from realizing

that they are watching the same videos 3 times.
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5.1.2 Results

In this section, I present the results of our mTurk study. In our analysis, we categorize the videos

based on their displayed notifications afterwards. Therefore as ”default videos“ we refer the first

displayed videos; as ”reported videos“ we refer to the videos where energy saving is reported

to the user and as ”not-reported videos“ we refer the videos where no energy notifications are

displayed. Table 5.2(a) shows the averages of user satisfactions for both applications. As shown

in the table, users’ satisfactions increase if they are notified with energy savings. We observe the

average satisfactions as 3.98 and 3.91 for the game application and 3.91 and 3.69 for Instagram

application for the reported and not-reported videos, respectively. We also observe that for the

game application, default video’s satisfaction is highest. Although all videos are same, it is possible

that users expect more screen brightness for game application and lower their ratings. Further, we

perform t-tests between the satisfaction ratings of reported and not-reported videos in order to see

how their means differ from each other. Table 5.2(b) shows the p-values of the t-tests. As shown

in the table, especially in Instagram application, we observe a low p-value (as low as 0.066),

which indicates that (for significance level of 0.1) the averages of the reported versus not-reported

videos are different from each other. Similarly, it is possible that users think there is a brightness

reduction in game application and they might not like it, since we do not observe a significant

difference between the reported and not-reported videos on the game application.

Next, we look at the relation of reported energy saving levels and user satisfactions. Specif-

ically, we are interested in the changes on a user’s satisfaction ratings between the reported and

not-reported videos based on the reported energy saving levels. Table 5.3 shows the average re-

ported energy savings and the proportion of users based on the change in the satisfaction ratings

of reported and not-reported videos. Therefore in the first column, ”increased satisfaction rating“

means, users increase their ratings in the reported video and ”decreased satisfaction rating“ means

users decrease their ratings in the reported video (compared to the not-reported video). As shown

in the table, for both applications, we observe more users give higher ratings on reported videos

compared to not-reported videos. For game and Instagram applications, we observe 32% and 47%
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of the users give higher ratings to reported video and their average reported energy savings are

7.60% and 7.54%. On the other hand for same applications, we observe 24% and 28% of the users

give lower ratings to reported videos and their average reported energy savings are 5.93% and

7.12%. It is possible that, users may be less likely to sacrifice their brightness in game application

comparing to Instagram application. However, since the videos are identical in both applications,

these results show that there is a direct positive effect between the reported energy savings and the

user satisfaction. This correlation becomes more profound as the reported energy saving levels are

increased. In Section 5.2, we will further analyze this relation.

Before starting the study, we also asked users to fill a form in order to collect some personal

and environmental factors. Although we make comparisons user-wise to eliminate environmental

factors among users, we were interested in investigating whether it is possible to see trends in user

satisfaction of brightness based on their age, phone usage, etc. Hence, we compare the satisfaction

levels of reported and not-reported videos based on these factors. We first categorize the users

based on their ages. We observe that users younger than 35 years old give significantly higher

ratings to reported videos compared to not-reported videos, while users older than 50 years old

give either same or lower ratings. We observe the highest difference among users for ages 18

to 24: we observe average ratings as 3.66 and 3.75 for game application and 3.67 and 3.91 for

Instagram application for reported and not-reported videos, respectively, for this age group. This

shows that, for younger people, battery lifetime is more important. Moreover, we collect users’

daily smartphone usages in a 5-likert scale (1 is minimum usage, 5 is maximum usage). Not

surprisingly, we observe that as the usage increase, the average satisfaction ratings of reported

videos also increase. Users become more sensitive to battery lifetime as they use their smartphones

more frequently. We observe similar outcome when we compare users’ application usage ratings to

satisfaction ratings. For both applications, users who give higher ratings to application usage (again

in 5-likert scale) also give higher satisfaction ratings to reported videos. On the reported videos,

we observe 12.03% and 9.90% increase in satisfactions between users with high application usage

(ratings 4 or 5) and low application usage for game and Instagram applications, respectively. When
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we compare the genders of the users, we also observe that while male users (compose 62% of all

users) give higher usage ratings to game applications and are more sensitive to energy savings on

game application, female users give higher usage ratings to Instagram application and are more

sensitive to energy savings on Instagram application.

Finally, we collect ambient light level of the environment again in a 5-likert scale (1 is very

dim, 5 is very bright). We observe that 25% of the users select their environment’s ambient light

level as maximum (5 out of 5). We also observe that, their average satisfaction ratings for reported

videos also decrease comparing to not-reported videos: their averages are 4.2 and 4.66 for game

application and 3.6 and 4 for Instagram application. Although users watch the same video, it is

possible that, with the reported saving, they might assume they are watching the video in a dimmed

brightness. While this does not cause any concerns in low ambient light environments, it may cause

dissatisfaction for higher ambient light environments. Thus users’ sacrifice level on brightness for

more energy does also vary based on the environmental conditions.

5.1.3 Predicting User Satisfaction of mTurk Users

In the mTurk study, we observe that user satisfaction typically increases as the users are notified

about the energy savings. We also observe a positive correlation between the amount of the re-

ported energy saving and the increase in satisfaction. Having said that, there are still personal and

environmental factors that might effect user satisfaction on energy savings. In order to see how

accurately we can predict user satisfaction of the played videos with the collected data, we build

prediction models.

We use the Weka-tool to test different prediction algorithms. For training, we use 10-fold

cross-validation, therefore, training and test data never overlap. We observe that tree algorithms

are relatively better on predicting the satisfaction. Our results show that, we can achieve the best

accuracy of 85.23% and 86.40% using RepTree algorithm in Weka-tool for game and Instagram

applications, respectively. Once we add other collected metrics (gender, age, ambient light level in

the environment, phone usage level, and application usage level) we observe a slight increase on
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the accuracy (85.66% and 87.02%). This shows that, although we have a slightly better accuracy

by adding personal and environmental factors, we can still achieve a high accuracy on predicting

user satisfaction with the given energy saving level alone.

Next, we go into the wild in order to understand how energy savings effect users’ satisfaction

in the daily usages with users own smartphones.

5.2 Second User Study: In-The-Wild Study

In this section, I explain our In-the-Wild study. In this study, we investigate energy savings’ effects

on user satisfaction in their daily usage with their own smartphones. I first explain brightness

settings on smartphones. Then, I introduce our light-weight logger application. Afterwards, I

explain our methodology and scenarios we use during the In-the-Wild study. Finally, I discuss our

results and present our prediction model.

Figure 5.2: (a) Observed screen brightness levels in varying ambient light in the environment and
(b) observed average power consumption for each brightness levels.

5.2.1 Setting Brightness on Smartphones

We control brightness on the target phones in order to save energy. There are three reasons we

choose brightness for energy savings. First, screen is one of the most power hungry components

in smartphones and any savings in screen energy will have a significant effect on overall system

energy [119]. Second, controlling brightness do not require any special hardware or software

support (unlike CPU scaling, which requires root access on the target phones) in application level,
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which makes it possible to conduct our study in the wild with wider audience. Third, as explained

in Chapter 5 introduction, in our online survey, when comparing brightness and battery, we observe

92% of users choose battery as more important than brightness, meaning that users will be more

willing to sacrifice their brightness if it leads to power savings.

In smartphone displays, a high contrast ratio is a desired aspect. For instance, in a completely

dark room, the contrast ratio is precisely determined by the white and black pixels in the phone

display. However, in an environment with external/ambient light, display’s optical characteristics

do not necessarily absorb all of the incoming ambient light and some of that light is reflected

back to the viewer. This reflected light reduces the resulting contrast ratio. Therefore, modern

smartphones use ambient light sensor to measure the incoming light level and control brightness

accordingly in order to increase contrast ratio for better user experience.

In order to understand how brightness is controlled on the smartphones, we reverse-engineer

the method by observing brightness values under all possible ambient light environments a typical

smartphone can measure. We use two devices for this experiment: a Nexus 6p and a Samsung

Galaxy S7. Both observed screen brightness level and ambient light reading data are retrieved from

the operating system. The continuous model of this data is presented in Figure 5.2(a). Note that we

observe the same outcomes for both devices. As shown in the figure, in the default settings, overall,

the screen brightness follows the square root of the ambient light levels, reflecting Steven’s Law. In

Figure 5.2(b), we also show the increase in power consumption (compared to the zero brightness

setting) for varying brightness levels. As shown in the figure, increase in power consumption is

almost linear with the increase in brightness levels. In our experiments, we use both observations

(i) to set the brightness and (ii) to report energy savings in the wild.

5.2.2 Logger Application

For our In-the-Wild tests, we develop a logger application and make it available on Google Play

Store. The application is developed as a regular ART (Android runtime) executable using the Java

standard libraries available in the Android framework. Therefore, it can be used in any Android
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Table 5.4: (a) Observed smartphone brands and models of the in the wild users and (b) The five
scenarios tested during In-the-Wild studies.

(a)

Brand/Models

Huawei - Nexus 6P
Motorola-Moto G (5) Plus

Samsung Galaxy on5
Samsung Galaxy S5

Samsung Galaxy S7 Edge
Samsung-SM-N910H
Samsung-SM-G930T

Sony Xperia Z3
ZTE - Blade V8

(b)

Scenarios Brightness Drop Report Energy Saving

Scenario 1 20% Yes
Scenario 2 40% Yes
Scenario 3 20% No
Scenario 4 40% No
Scenario 5 - No

smartphone without any hardware or software support. Table 5.4(a) shows the brands and models

of the phones of the users who participated in our In-the-Wild study. At a high-level, the application

consists of two parts: (1) a GUI part (2) and a background service part:

• The GUI part: When the application is first started in the phone, it asks basic user permis-

sions such as overwriting settings to control brightness, accessing sensors to monitor ambient

light sensor, etc. Also a notification is shown on the upper bar of the phone screen to inform

users that the application is running in the background. Moreover, a pop-up questioner (5-

likert scale chart) is displayed every 6 hours to collect user satisfaction ratings.

• Background service: The background service implements three main tasks: 1) logging user

satisfaction ratings and system metrics shown in Table 5.5, 2) controlling brightness and 3)

selecting and implementing daily scenarios in random order (we further discuss this in the

next section). To prevent perturbation, logging and setting screen brightness occur every 5

seconds. Also, the service periodically looks for a network connection and sends the logs

back to our server. We observe that our logger increases the CPU utilization less than 1%

on average and adds less than 50 mW additional power consumption in the worst case. In

case our background service was implemented in the kernel space instead, its overhead to

the system would be even smaller.

Table 5.5 shows the collected system metrics by our logger application. As discussed in Section
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Table 5.5: Collected system metrics during the In-the-Wild study.

System Metrics Explanation

Ambient light We collect ambient light in the environment in order to determine default brightness level

Screen Brightness We collect screen brightness level to calculate energy savings.

Current and Voltage We collect current and voltage to calculate power consumption.

Phone usage We collect the “screen on” times in order to calculate energy consumption.

Battery level We collect the battery levels on the target phones.

User satisfaction ratings We collect user satisfaction ratings for each scenario through the pop-up questioners.

5.2.2, we collect ambient light in the environment to control brightness and we collect phone

usage (in time) along with screen brightness levels to report energy savings. More specifically,

we map corresponding brightness levels for all ambient light and power consumption levels for all

brightness settings in our logger application in order to calculate energy savings with the phone

usage. We must note that, these metrics are easily accessible (with basic user permissions) in

system level without any additional software or hardware support.

Figure 5.3: (a) Pop-up screen reporting the energy savings and (b) pop-up questionnaire to collect
the user satisfaction ratings.

5.2.3 Methodology and Scenarios

We conduct our In-the-Wild study with 20 smartphone users. The majority of participants are

college students and all participants are under the age of 50. Participants are gathered through

fliers advertising the study and word of mouth. The experiment is started by installing the logger
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application from Google Play Store and giving all requested permissions. Each user study takes

10 days. During the 10 days, users use their smartphones as they would typically use, while the

logger application runs in the background. In the meantime, we monitor the logging data sent from

the users’ phones to our server.

During the In-the-Wild study, in order to understand energy savings’ effects on user satisfac-

tion, we define 5 different scenarios. Since a user study takes 10 days, each user tests each scenario

exactly 2 times. Table 5.4 summarizes the scenarios tested in the study. As shown in the table, in

Scenarios 1 and 2 we drop brightness 20% and 40% from its default value and report the saved

energy value to the user, in Scenarios 3 and 4 we drop brightness again to 20% and 40%, but we do

not report any savings. In scenario 5, we neither drop nor report any savings and let the brightness

to be controlled by the default mechanism on the users’ phones. Thus, we make users to test same

brightness drops by (i) notifying and (ii) not notifying them on how much energy they save. Please

note that the reported energy savings are based on the voltage/current readings and repre-

sent the actual savings achieved by the applied scheme. During the study, a pop-up questioner

is shown to users every 6 hours to collect user satisfaction ratings. During the Scenarios 3, 4, and

5 we only display pop-up questioners for user rating. For Scenarios 1 and 2, we also display the

energy savings right before the questioner. Therefore, we can see the effect of reporting energy

savings on the satisfaction ratings. Figure 5.3 shows the formats of reported energy saving and

user satisfaction questioner pop-ups.

We determined brightness drop levels and scenarios by conducting experiments with different

combinations offline in our lab. It is possible that some alternative dropping levels or different

scenarios may be preferable by other developers. The selected drops and scenarios could also

be expanded to make different observations. However, we find the selected brightness drops and

scenarios are good enough to analyze a variety of energy saving levels and their impact on user

satisfaction within a reasonable experimental duration.
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Figure 5.4: Average satisfaction ratings across users for each tested scenario.

Table 5.6: T-test result (p-values) of scenarios.

Scen 3 Scen 5 Scen 4 Scen 5

Scen 1 0.07599 0.8035 Scen 2 0.009464 0.6335

5.2.4 Results

In this section, we present the results of our In-the-Wild study. Figure 5.4 shows the individual

user satisfaction ratings for each scenario. As shown in the figure, there is a high variation across

reported user satisfactions. Although some users do not notice the differences or do not get ef-

fected from the changes on the screen and constantly give low (e.g., user 15), medium (e.g., user

9), or high ratings (e.g., user 2) to all scenarios, majority of users show high sensitivity between the

scenarios. More, while some users enjoy the more energy savings by sacrificing the brightness of

their phones more (e.g., user 18), for some other users, reducing brightness causes dissatisfaction

(e.g. user 10). Having said that, in general the first 2 scenarios, where we drop the brightness

and report energy savings, have the highest satisfaction ratings (the right-most set of bars in the

figure present the average ratings across all users). If we compare the reported versus not-reported

scenarios with the same brightness drops (i.e., Scenario 1 versus 3 and Scenario 2 versus 4), we

observe only three users give higher ratings to not-reported scenarios. We observe average rat-

ings as 3.70, 3.87, 3.29, 3.18, and 3.63 for Scenarios 1 through 5, respectively. It is also worth

to note that we observe the reported energy savings range between 2% and 23%: the averages

are 5.62% and 7.91% for Scenario 1 and Scenario 2 (where we drop brightness 20% and 40%),

respectively. Another interesting observation is that both reported scenarios (Scenario 1 and Sce-
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nario 2) show higher satisfaction ratings than the default scenario (Scenario 5), where we do not

drop the brightness. This shows that, informing users with their energy savings, even though the

overall savings are somewhat small, improves the satisfaction significantly. In fact, we observe

that dropping brightness 40% and not reporting energy savings (Scenario 4) is the least satisfied

scenario for our users. However, if users are notified with the energy savings achieved from this

brightness reduction, it becomes the most satisfied scenario (Scenario 2). Overall, we observe the

highest satisfaction differences with 17.8% improvement between Scenario 2 and 4. This suggests

that as the energy saving increases above a threshold, users are willing to sacrifice more (as long

as they are aware of the savings).

Further, we conduct t-tests on the reported versus not-reported scenarios with the same bright-

ness drops (i.e., Scenario 1 versus 3 and Scenario 2 versus 4). Table 5.6 shows the p-values of the

t-tests. The p-value of 0.009465 for the comparison of Scenario 2 and 4 indicates that these two

scenarios do not have the same mean. Similarly, the p-value of 0.07599 between Scenario 1 and 3

indicates that there is a small chance that these two scenarios have the same mean (albeit a much

higher probability compared to the comparison of Scenarios 2 and 4). These results also show

that when informed about the energy savings, users are more satisfied and willing to sacrifice their

screen brightness more.

Figure 5.5: (a) Normalized User Satisfaction Ratings on Reported Energy Savings, (b) Normalized
User Satisfaction Ratings on Phone usage
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Figure 5.6: (a) Normalized User Satisfaction Ratings on Battery Levels and (b) Normalized User
Satisfaction Ratings on Ambient light level in the environment.

5.2.5 Predicting User Satisfaction for In-The-Wild Users

In the previous section, we show that user satisfaction varies across users. To understand how

energy saving levels impact user satisfaction, we gauge how well the reported energy savings

correlate with the subjective ratings. Our goal is also to investigate the nature of the correlation

between the reported energy saving levels and user satisfaction. Therefore, we analyze the accuracy

of predicting user satisfaction (ratings) for a reported energy saving level. Specifically, we develop

a prediction model that takes the energy savings as input and predicts the user’s satisfaction. For

the training data, we use all reported energy savings and their corresponding satisfaction ratings.

In the model, the ratings are normalized for each user such that maximum rating of the user is set

to 1 and a fixed value (1/5 = 0.2) is decreased for each sub-points. For example if user A has a

maximum rating 5 and another rating 4 for reported energy savings, we normalize these ratings

as 1 and 0.8 in order to reflect this 1 point drop in the satisfaction. Similarly if user B has a

maximum rating 3 and another rating 2; we also normalize these ratings as 1 and 0.8. Because

user B has the same 1 point drop in his/her satisfaction rating scale as the user A had. For the data,

we use the reported energy savings obtained during the tests of Scenario 1 and Scenario 2 and the

corresponding reported satisfactions to build the supervised learning models.

Similar to analysis in Section 5.1.3, we use Weka-tool to test different prediction algorithms.

For training, again we use 10-fold cross-validation, therefore, training and test data never overlap.

We observe that, regression and tree algorithms are relatively better on predicting the satisfaction.
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We test a variety of linear and non-linear regression algorithms/equations to predict user satisfac-

tion with the given energy savings. Our results show that, we can achieve the best accuracy with

86.6% rate using Non-linear Logarithmic regression with the following formula:

user satis = 0.1185 ∗ ln(energy saving level) + 0.6774

Figure 5.5(a) shows the data points of normalized user satisfaction ratings on the reported

energy savings along with the equation’s curve. As shown in the figure, user satisfaction increases

as the reported energy saving increases.

Using tree algorithms (e.g. RepTree), we can predict the satisfaction with 85.6% accuracy.

Since tree algorithms are formed with branches based on their separation the data into two, we

observe the energy saving value separates the user satisfaction most is 7.6979: above this value is

assigned as 0.95 (closer to 1, maximum satisfaction) and under this value separates again for lower

satisfaction ratings. This result shows that for the energy saving above 7.69%, most of the users

give their maximum ratings.

We also analyze the relation between other collected metrics (Table 5.5) and satisfaction rat-

ings. Figure 5.5(b) shows the satisfaction ratings for smartphone usage. We calculate the smart-

phone usage as the “screen on” log counts between reported satisfaction ratings. Similar to Sec-

tion 5.1.2, we observe a positive correlation between the phone usage and user satisfaction: as

the phone usage increases, user satisfaction on energy savings also increases. Users who use their

smartphones more are more sensitive to energy savings. On the other hand, when we look at the

relation between battery levels and user satisfaction ratings in Figure 5.6(a), we observe a nega-

tive correlation: as the battery level increases, user satisfaction drops. Considering that users with

lower battery levels typically need more energy savings, it is reasonable for them to give higher

priority to energy savings. Since energy savings would not be as crucial for users with higher

battery levels, they may not want to sacrifice their brightness. Finally, Figure 5.6(b) shows the

relation between ambient light in the environment and satisfaction ratings. Similar to Section 5.1,
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there is a negative correlation between the ambient light in the environment and satisfaction rat-

ings. On higher ambient light levels, users need more brightness in order to increase contrast on

the smartphone screen. Therefore, dropping brightness may be causing more dissatisfaction. On

the other hand, user satisfactions increase in the environments where ambient light is lower.

I should also note that, once we add all collected metrics in Table 5.5 to the prediction model

we observe a similar accuracy (86.02%) on predicting the user satisfaction. Thus, given energy

saving level alone is good enough to achieve high accuracy on predicting user satisfaction.

5.3 Summary

In this project, we study energy savings’ effects on user satisfaction. Specifically, we quantify the

importance of energy savings on user satisfaction by conducting two user studies.

We conduct our first study over the Amazon Mechanical Turk platform. In this study, we make

users watch the identical game play (and instagram) video 3 times and report their satisfactions

about the brightness. In order to understand how energy savings’ affect user satisfaction, in one

of these videos, after watching the video we display (report) a random energy saving level. Our

results show that, although users watch the same videos, their average satisfaction increase when

the system reports energy savings.

In our second user study, we go into the wild in order to understand the energy savings’ effect

on user satisfaction using users’ own smartphones in their daily lives. In the wild, our users test and

rate 5 scenarios, one scenario each day (each scenario twice for a 10-day study). In these scenarios,

we drop brightness by either 20% or by 40% and either report or do not report energy savings

(the fifth scenario is the default brightness management scheme of the phone). We then compare

reported and not-reported scenarios’ satisfactions to analyze energy saving reports’ effects. We

observe that user satisfaction is the highest on average when the brightness is dropped by 40% and

the system reports saved energy.

Finally, we build prediction models to correlate user satisfaction with the reported energy sav-

ings, which to the best of our knowledge first of its kind.
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ALTERNATIVE USE OF USER SATISFACTION: MITIGATING SMARTPHONE AND

APPLICATION OVERUSE

Recent technological advances have led smartphones to become an indispensable part of modern

society. Today, there are more than 3.2 billion active smartphone users in the world [122]. More-

over, smartphones are nearly ubiquitous among younger adults: 96% of Americans and 93% of

British aged 18 to 29 own at least one smartphone [29, 100].

Although smartphones have helped to improve the quality of life in some sectors by enabling

“on-the-go” access to several aspects (e.g., web-browsing, communication, shopping, banking,

gaming, etc.), the increasing dependency on smartphones also brought growing concerns regarding

their negative aspects such as excessive usage. Users spend more time with their phones (on

average 21 hours per week and about 90% of the time is in applications) than using any other

devices (i.e., laptops and desktop-computers) [110]. Recent research has highlighted a number

of potential problems as a consequence of mobile overuse: addiction, financial problems, and

dangerous use (e.g., whilst driving) [83, 143]. There is also an increasing concern among parents

for their children’s excessive phone usage due to its possible negative effects on both social and

academic life [83, 145, 143]. In addition, studies also show certain harmful health effects, which

might be caused by the immoderate use of phones including cancer, headache, sleep disorder,

anxiety, and depression [35]. Moreover, the World Health Organization considers excessive mobile

phone use as a public health concern [101], emphasizing the need for more research on preventive

measurements.

Despite the importance of reducing excessive phone use, number of methods and their effi-

ciencies are quite limited and/or still unknown. A quick solution to reduce usage would be imple-

menting time restrictions to the phone or applications. While this can lead to significant reductions

is usage, it has been show that such restrictions can cause serious possible side effects on users
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such as anxiety and depression [2, 95]. Thus, there is a need to develop better methods to mitigate

overuse in daily life. In this work, we degrade user experience by controlling display brightness in

order to reduce excessive phone usage.

The display is the primary user interface on smartphones. While earlier displays were only an

output system for these devices, the introduction of touchscreen feature made them the main input

component as well. Visibility of the display is therefore one of the most important aspects for high

quality user experience. In order to create the desired visibility for the display, systems typically

control brightness by measuring ambient light level in the environment: if the smartphone is under

direct sunlight, backlight is increased in order to provide a better visibility whereas if the phone is

in a dark room, backlight is dimmed in order to increase user experience (generally a too bright

display is not desirable in a dark room). In fact brightness settings has a direct and instantaneous

effect on the current user experience about the phone [74, 114, 113].

In this project, we propose Phone Free, a system to reduce excessive daily phone usage of the

users. The system relies on the hypothesis that creating discomfort by altering brightness levels

(or showing pseudo pop-ups on the screen) will yield users spend less time with their applications

and hence phones. In order to test this hypothesis, we develop three different models to degrade

user satisfaction on the target phone: gradually or rapidly dimming brightness and showing pseudo

pop-ups on the screen. For the rest of the chapter we refer them as “gradual model”, “rapid model”

and “pop-up model”, respectively. We evaluate our system by conducting an IRB (Institutional

Review Board) approved user studies with a total of 30 real users and 22 different smartphone

models/brands with varying operation system versions.

We conduct our user tests in the wild by releasing a logger application into the market. During

the experiments, users test three models and the default scheme each day in a random order. Their

combined data represents a total of over 240 days of worth of recorded use. We regularly collect

overall display satisfaction of the users through 5-point likert chart pop-up questioners. Our results

show that when compared to default scheme, our models reduce maximum application session

length by up to 37.82% on average with a negligible sacrifice on satisfaction. Moreover, due to
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brightness dimming mechanisms and overall reduced phone usage with the proposed models, we

can save energy especially in prolonged usage scenarios. Our results also show that the proposed

system saves up to 5.68% system level power, when compared to the default scheme. We discuss

the session lengths and power savings for all proposed models in more depth In Section 5.

Table 1 shows the brands/models and Android versions of the participants’ phones. Note that,

in our user studies, we collect data by releasing a logger application to Google Play Store. There-

fore, we did not attempt to control or select any of our participants. The users are anonymous

people who downloaded our logger application from the market and use it just like any other ap-

plication they install from the market.

Overall our primarily contributions can be listed as below:

• We show that we can reduce maximum and average application session lengths by degrading

user experience over time.

• We show light-weight tools and methods to reduce excessive phone usage in real time.

• We show that by controlling brightness and decreasing application session lengths, we can

achieve on average 5.68% system level power savings.

• We show analysis on how gradually and rapidly dimming brightness effect user experience

and hence phone usage.

The rest of the project is structured as follows. In Section 6.1, I explain our methodology. In

Section 6.2, I describe our experimental study. I discuss our results in Section 6.3. I present further

discussion in Section 6.4.

6.1 Methodology

In this section, I discuss our methodology for our user studies. I first introduce our logger appli-

cation along with collected sensor and system information and the overhead of our tools. Then, I

explain controlling brightness in modern smartphones.
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Table 6.1: Participants’ Phone Brands/Models and API Levels

ASUS-X00PD - 26 ONEPLUS A5000 - 25
Google-Pixel 3 - 28 ONEPLUS A3003 - 28
Google-Pixel 3 XL - 29 Realme-RMX1971-29
Huawei-LND-AL30 - 26 Samsung-SM-G - 25, 27, 28, 29
HMD Global-Nokia 1 - 28 Samsung-SM-J - 25, 26, 27, 28
Infinix X650C - 28 Samsung-SM-N - 29
I-life-ITELL-K3500N-27 Samsung-SM-S - 28
LGE-LM-X120 - 28 Samsung-SM-T - 28
Motorola one macro-28 TCL-5032W - 28
Motorola-moto e5 cruise - 26 Vivo 1803 - 27
Motorola-XT1562 - 25 Xiaomi-Redmi 5 Plus - 27

Figure 6.1: GUI part of the logger application (on the left) and pop-up questioner and background
service functions from data collection to implement the selected model (on the right)

6.1.1 Logger Application and Collected Metrics

We develop a sensor-logger application to collect system metrics from target devices and release

it on the Google Play Store. The logger is developed as a regular Android Runtime (ART) ex-

ecutable using the Java standard libraries available in Android frameworks. Thus, it runs on all

Android smartphone devices without any special hardware or OS support. At a high-level, the

logger application consists of two parts: (1) a GUI to collect 5-point likert scale user satisfaction

ratings and (2) an associated background service to provide the logging functionality.

The GUI application is designed to collect user satisfaction ratings about the phone’s brightness

settings through pop-up questioners shown on the screen in every 6 hours (Figure 6.1(left)). We

collect the user ratings in 5-point likert scale chart: 1 is worst, 5 is best. We analyze relation

between our models and user satisfaction in Section 5.

Background service starts as the GUI starts. The service is responsible for 1) collecting system
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Table 6.2: Collected System Metrics

System Metrics Explanation
Ambient light We collect ambient light in 1Hz sampling

rate.
Screen brightness We collect screen brightness in 1Hz sampling

rate.
Application We collect current foreground application on

the screen.
Time We collect time as in 24 hours scale every

hour and in 4 phase of the day as morning,
noon, evening, and night

Battery level We collect battery level on a scale 1-100 by
listening every battery change event.

Location We collect latitude and longitude values of the
phone every 20 seconds using Android Loca-
tion API [14]

Activity We collect user activities every 20 seconds us-
ing Android Activity Recognition API [55]

Power Consump-
tion

We collect current and voltage values in 2Hz
rate using Android’s Battery Manager API
[57]

metrics, 2) choosing the model to be tested in random order each day, 3) keeping the application

session times and 4) implementing the selected model in order to reduce overuse. Figure 6.1(right)

shows the background service’s tasks. Also, the service periodically looks for a network connec-

tion and sends the collected data back to our server when the collected data size exceeds 500KB.

In our proposed system, in order to reduce excessive phone usage in real time, we collect data

from various system metrics using default Android APIs. Table 6.2 lists the used metrics and

sampling rates used for our models. We select these metrics in order to control the brightness and

implement our models in a timely manner. We also explore the relation of the collected metrics,

user experience, and application usage sessions in Section 5 in more depth. As shown in the

table, we collect sensor data (ambient light), foreground application information, activity, and

location data from the target smartphones. All of these metrics can be monitored with basic user

permissions (i.e., body sensors, usage statistics, location access, etc.) that can be verified through

our application. We collect most of our metrics either as event driven or in lower sampling rates

in order to decrease application overhead. We should note that, we could also collect some other

metrics like CPU usage and complex touch events (i.e. size, 2D coordinate, etc.) from logcat in the
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target phones for our analysis. However, since monitoring logcat requires super-user permission

(i.e., root access), we do not include them in our collection set.

We use MonkeyRunner [98] tool in Android to measure overhead of the logger application.

MonkeyRunner tool provides an API for writing programs that control an Android device or em-

ulator from outside of Android code. We specify commands in Python scripts and sent them to

two different Android phones (a Google Pixel 3L and a Nexus 6p) through adb shell [13]. We

create the same workloads (same touch events, same run-times, etc.) and test each metric com-

binations (comparing overhead with and without the metric) for three minutes on three different

applications: a CPU-intensive game, CPU-moderate video, and a CPU-low animation application.

We observe that our background service is lightweight mainly because of the small frequency of

data collection. We observe logger application increases CPU utilization by no more than 2% on

the smartphones. Additionally, activating the logger increases energy consumption by less than

2% on the target phones on average. With the given sampling rate, monitoring location consumes

50-90mW more power on average, while ambient light sensor and other metrics’ overhead stays

in the 10-30mW range. In addition, we collect current and voltage values at 2Hz sampling rate

to calculate power consumption of the smartphone (note that the reported power levels are for the

whole phone).

Figure 6.2: Default scheme’s screen brightness settings in all ambient light changes.

6.1.2 Controlling Brightness in Smartphones

As explained in the introduction in Chapter 6, in gradual and rapid models, we control brightness in

order to degrade user experience. There are two main reasons we choose brightness in our studies.
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First, screen is the primary user interface, thus brightness has a direct and instantaneous effect on

user experience [114, 119]. Second, controlling brightness do not require any special hardware or

software support in application level, which makes it possible to conduct our study in the wild with

a wider audience. Specifically, in our preliminary in-the-lab experiments, we observed that there

are some other methods that can be utilized in order to degrade user satisfaction, such as slowing

phone performance with CPU scheduling. However, most of these methods require root access on

the target phones, which makes it impractical to reach a bigger and variety of crowds in the wild.

In smartphone displays, a high contrast ratio is a desired aspect. Modern smartphones use

ambient light sensor to measure the incoming light level and control brightness accordingly in

order to increase contrast ratio for better user experience. In order to understand how brightness

is controlled on the smartphones, we reverse-engineer the method by observing brightness values

under all possible ambient light environments a typical smartphone can experience. We use two

devices for this experiment: a Google Pixel 3L and a Nexus 6p. Both observed screen brightness

level and ambient light reading data are retrieved from the operating system. The continuous model

of this data is presented in Figure 6.2. We observe that in the default settings, overall, the screen

brightness follows the square root of the ambient light levels, reflecting Steven’s Law [123]. In

our logger application we map each ambient light to its corresponding brightness level. Thus, in

gradual and rapid models, we use this observation to reset the brightness back to its default settings

when needed.

6.2 Experimental Study

In this section, I discuss our experimental study. I first introduce our proposed three models (grad-

ual, rapid, and pop-up) and discuss the process of degrading user satisfaction during excessive

usage. Then, I explain our in-the-wild user studies.
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Figure 6.3: (a) Gradual and Rapid model brightness settings when offset brightness is level 100
and (b) An example of a pseudo pop-up in the pop-up model during a gameplay.

6.2.1 Tested Models

In the proposed system, we degrade user satisfaction about the phone to reduce overuse. In order

to do that, we develop three different models where we gradually or rapidly dim brightness and

do not change brightness but show pseudo pop-ups on the screen. In all tested models, we start

degrading user satisfaction when the foreground application’s usage exceeds 2 minutes without

any interruption. We keep degrading satisfaction frequency in an accelerating fashion as long as

user continues using the same application. If the user changes or exits foreground application or

manually alter the screen brightness, we reset the models’ degrading frequency back to its initial

value (2 minutes).

In the studies, users test three models and the default scheme in a random order each day:

• When the default model is selected, the application does not create any user dissatisfaction

and leaves the brightness control over to the default scheme. Note that the default scheme

may be different based on to the Android version of the user.

• When the gradual model is selected, logger-application starts decreasing brightness gradu-

ally if the foreground application’s usage exceeds 2 minutes without any interruption. In

gradual model, the time between consecutive dimming events is decreased as long as user

continues using the application. Whenever user changes or exits the application or manually

alter the screen brightness we reset the model back to its initial settings.

• When the rapid model is selected, similar to the gradual model, we create user dissatisfaction
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Table 6.3: Tested Models Along With Their Degrading Procedures and Reset Criteria

Model Degrading Procedure When to Reset
Default
Scheme

- -

Gradual
Model

Dims brightness gradu-
ally in an increasing fre-
quency over time

User exits or changes the fore-
ground application, or user alters
brightness manually

Rapid Model Dims brightness rapidly
in an increasing frequency
over time

User exits or changes the fore-
ground application, or user alters
brightness manually

Pop-up
Model

Shows pop-ups on the
screen in an increasing
frequency over time

User exits or changes the fore-
ground application

by dropping screen brightness on the target phones. Although brightness is set to same levels

in both models, the difference here is that the times between brightness dimming events are

longer compared to gradual model. In other words, we make smaller number of brightness

drops, but each drop is for a larger amount.

• When the pop-up model is selected, we do not control brightness and leave the brightness

control over to the default scheme, however, we show pseudo pop-ups on the screen in order

to degrade user satisfaction. Shown pop-ups always stay on the top of the screen unless there

is a user input on the screen. In pop-up model, again the frequency of pop-ups increases over

time as long as user continues using the application.

In our studies, we specifically want to test the rapid model in order to see how rapid changes

differ from gradual changes on user experience. Additionally, we include pop-up model in order to

compare effects of other methods (other than altering brightness) on user experience and eventually

on application and hence phone usage. Table 6.3 summarizes each model procedures and their reset

criteria. In all models, we increase the frequency of user dissatisfaction events (either dimming

brightness or showing more pop-ups on the screen) with a fixed acceleration rate:

tnew = α ∗ tprev (6.1)

where tnew is the time to next dissatisfaction event, α is a fixed rate for each model, tprev is
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time to previous dissatisfaction event.

Initial value of tprev is set to 120 (2 minutes in seconds) and; α is 0.86 for gradual and pop-

up models and 0.95 for rapid model, where we create user dissatisfaction events with a lower

frequency. As shown in equation 6.1, duration between two dissatisfaction events shortens by the

time, meaning models degrade user satisfaction more frequently as long as user continues using

the same application.

For gradual and rapid models, we set the brightness with an inverse exponential formula:

brightnessnew = − exp(β ∗ timeapp) + brightnessoffset (6.2)

where β is a fixed rate between 0.4 and 0.2 (depends on the offset brightness), timeapp is the

total application session duration, brightnessoffset is the initial brightness when the application

session is started.

Figure 6.3(a) shows the brightness settings over time for gradual and rapid models when offset

(starting) brightness level is 100. As shown in the figure, the gradual model procedure is as follows:

after 120 seconds (2 minutes) of use, brightness is dropped to level 98 (based on the equation

6.2), after 104 seconds (120 * 0.86) of continuous use, brightness is dropped to level 96; then

90 seconds (104 * 0.86) later to 93 and so on. Same procedure for rapid model is: after 120

seconds of use, brightness is dropped to level 98, after 114 seconds (120 * 0.95) of continuous use,

brightness is dropped to level 96; then 108 seconds (114 * 0.95) later to 93 and so on. Although,

at first, the distinction between these two models is not clear, as the use time increases, brightness

drops in rapid model will be much more rapid compared to gradual model. In fact, as shown in

Figure 6.3(a), when the use time exceeds 10 minutes (600 seconds), the brightness drop in rapid

model is more than 18 level, whereas in gradual model this number is about 6 level.

During the session, whenever user changes the foreground application or brightness manually,

models reset the next degrading event time back to 120 seconds. We make sure that, for gradual

and rapid models, no matter what the offset brightness is, models drop the brightness to minimum

value (level 1) after 900 seconds (15 minutes) of use: when timeapp equals to 15 minutes. We
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determine α, β and timeapp levels by conducting preliminary experiments both in our lab and in

the wild. Specifically, in the experiments, we observe the average and maximum phone sessions

as 15.2 and 80.9 minutes, respectively. Thus, we define the maximum application session duration

as 15 minutes for our models. Although we set the maximum session duration to 15 minutes, due

to our recurring user dissatisfaction events, it is highly possible for users to become uncomfortable

sooner. In fact, as shown in Figure 6.3(a), brightness reduced almost by half in the first 10 minutes.

It is also possible some other levels may be preferable by different developers. These levels could

also be changed to make our system more (or less) aggressive. However, we found these bounds

to work well in general.

Figure 6.3(b) demonstrates how pseudo pop-ups are shown on the screen during an application

session. As shown in the equation 6.1, similar to the other models, frequency of pop-ups increases

over time as long as user continues using the same application. We also set the minimum time

between pop-ups as 5 seconds in order to avoid possible stalling on screen inputs on the target

phones.

I should note that, during our user tests, we exclude some applications which can be essential

for phone’s functionality. Specifically, we do not induce dissatisfaction events when built-in system

applications or maps associated applications are used in the foreground. Moreover, we also exclude

some user activities such as driving, bicycle, etc. We detect such movement-related activities by

monitoring the activity and location metrics as shown in Table 6.2.

Figure 6.4: (a) Maximum application session for all users and (b) Average application sessions for
all users.
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Table 6.4: Post-hoc t-test results of each model

Models Default Scheme Gradual Model Rapid Model Pop-up Model
Default Scheme - 0.0724 0.7179 0.00619
Gradual Model - 0.3412 0.1472
Rapid Model - 0.0422
Pop-up Model -

6.3 Results

In this section, I present the results acquired from our user studies. We test the gradual, rapid, and

pop-up models along with the default scheme in a random order each day. In total, we receive data

from 58 users. Unfortunately, not all of our participants use the logger-application long enough.

Also, some users did not provide enough inputs to perform an analysis (a common issue with

conducting in-the-wild tests with real users). Once we filter out the users who don’t give inputs to

the questioner and who test each model less than twice, we end up with 30 users whose results we

present below.

6.3.1 Maximum and Average Application Sessions in Each Model

We consider mobile application sessions to be consecutive periods of time during which a user in-

teracts directly with the same foreground application on the phone. Since in the proposed schemes,

models reset their timing when the foreground application is changed, we were specifically inter-

ested in seeing how proposed models perform on application session lengths.

Figure 6.4(a) shows the recorded maximum application session lengths of each users. Since

usage characteristics and application selections vary, we observe a large variation between session

lengths of each user. We observe the default scheme has longest sessions in 13 (out of 30) users.

Moreover, there are only 2 users (user2 and user19), where default scheme’s session is minimum.

We observe the average maximum application sessions as (in seconds) 3441.5, 2708.3, 3227.0

and 2139.6 for default, gradual, rapid, and pop-up models, respectively. Overall, our models are

successful in reducing the session lengths: compared to default scheme, on average we observe

21.30%, 6.23%, and 37.82% reductions for gradual, rapid, and pop-up models, respectively. I also
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explain the possible reasons behind this in the next section (Section 5.2).

Figure 6.4(b) shows the average application sessions for our 30 users. Although, in the pro-

posed system, we aim to reduce overuse in smartphones, we were still interested to see the perfor-

mance of our models on average use as well. Similarly, due to differences in user characteristics,

we observe a high variation between the sessions across users. In order to create a clear view, we

use a logarithmic scale on the y-axis. We observe the average application sessions as (in seconds)

160.7, 121.4, 158.8, and 144.2 for the default scheme, gradual, rapid, and pop-up models, respec-

tively. We also observe that, user6, user13, and user29 have significantly longer sessions. In our

analysis, we also show the average values by omitting these users in “A2” in the figure, where

average values drop to 94.2, 83.4, 89.5, and 85.8 for each model respectively. Overall, our models

reduce average sessions by 24.46%, 1.19%, and 10.22% for gradual, rapid, and pop-up models

respectively.

I should note that, in our analysis, when calculating the average sessions, we consider all

application sessions. However, in a typical daily usage, there are a lot of short sessions as well. In

fact, in total we observe 132859 application sessions from our users, where 37.5% of them were

under 2 minutes in length. This means that, our models do not implement any dissatisfaction event

37.5% of the sessions and hence we observe relatively less reductions in Figure 6.4(b).

In order to analyze the session results further, we performed ANOVA [19] test to see how

the four models’ results differ from each other. In the test, we observe the p-value as 0.04843

which indicates that result is significant and the means differ. Since p-value is significant, in

order to understand how each model differ from each other, we then conduct post hoc pair-wise

t-tests [102]. Table 6.4 shows the measured p-values in the t-tests. As shown in the table, the

p-value for the gradual and pop-up model versus default model comparison is significant (with

significant level 0.1 and 0.05), meaning that, with the proposed models we can indeed reduce

maximum application session lengths.
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Figure 6.5: (a) Distribution of 2+ min application sessions for each model (b) Average application
session counts with varying lengths of all users and (b) Averages of maximum session duration for
most common applications for all users.

6.3.2 Application Session Length Analysis

Figure 6.5(a) shows the distributions of application sessions where the duration exceeds 2 minutes

for each model. Since, in our models, we start to degrade user experience in longer sessions

(starting at 2 minutes), we were particularly interested in the performance of our models for longer

sessions. In the boxplots, whiskers are extended to include 95% of the data. As shown in the figure,

average count of longer sessions in the default model is higher than all other models. In fact, we

observe the total number of counts as 27618, 19312, 19710, and 16345 for the default, gradual,

rapid, and pop-up models, respectively. Having said that, we still observe some long sessions in

our models as well.

Figure 6.5(b) shows the average (per user) session counts of all users for each model, where

the sessions exceeds 5+ minutes, 10+ minutes, 15+ minutes, and 20+ minutes respectively. As

described in Section 4.1, in our proposed models, we increase the frequency of interrupts as long

as the user continues using the same application. Thus, we also observe the average counts of

sessions drop over time in all models. As shown in the figure, we observe default scheme has

the most counts in all session lengths. Moreover, we observe the minimum session counts in the

gradual model as the session lengths increase (after 10+ minutes): we observe 45.26% reduction

when the session lengths reach 20+ minutes compared to default scheme.

Although we observe a high variation on both application selections and application usage

characteristics of users, we extract the most common applications from our users. Figure 6.5(b)
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shows the averages of maximum session lengths of the most common applications across all users.

We observe the 6 most common applications of our users are YouTube, Facebook, Google Chrome,

WhatsApp, Instagram, and Google Search Box. As shown in the figure, in majority of the applica-

tions, we see the maximum usage when the phone is in default scheme; and minimum usage when

the phone is in the pop-up model.

When we look at Figure 6.4 and Figure 6.5, we observe that pop-up and gradual models reduce

the overuse the most. For the pop-up model, the reasoning behind it could be the fact that unlike

the gradual and rapid models, in order to dismiss the pop-up messages shown on the screen, users

need to touch to screen. In gradual and rapid models, on the other hand, users are only exposed

to dimming brightness and hence are not necessarily required to perform an action. Moreover,

in pop-up model, users particularly need to change or exit the foreground application in order to

reset the pop-up events, while in gradual and rapid models, users can reset the events with manual

brightness changes as well. Further, we observe that the gradual model reduces overuse more

compared to rapid model. Due to rapid changes in brightness, in rapid model, users notice these

changes earlier than gradual model, hence alter the brightness manually sooner. Since change in

brightness results models to reset their dimming events back to initial settings (2 minutes), we

observe longer application sessions with the rapid model. In fact, we observe that in the rapid

model, for each application session, users perform 1.91 brightness changes on average, while this

rate is 1.44 for the gradual model.

6.3.3 Overall User Satisfaction

We collect ratings through a pop-up questioner four times a day in order to understand how pro-

posed models effect the overall user experience (as explained in Section 4.2). Figure 6.6(a) plots

the average satisfaction reports gathered from these pop-up questioners. In order to analyze the

differences between the models, we normalize them by calculating their relative change based on

the default scheme’s value for each user using the formula:
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Figure 6.6: (a) Average user satisfaction ratings (top) and relative user satisfaction ratings for
each model for 30 users (bottom); and (b) Average power consumption (in mW) (top) and relative
average power consumptions for each model for 30 users (bottom).

relativechange = (Satisx − Satisdefault)/Satisdefault) (6.3)

where x represents all four models for the user. Figure 6.6(a) (bottom) shows the relative

average satisfaction ratings of the four tested models for all users. As shown in the Figure 6.6(a),

there is again a large variation in user satisfaction levels. While some users are more sensitive

to models’ degrading events and can clearly distinguish the four models (e.g., user13; in fact, as

shown in Figure 6.4(a) user13’s maximum session lengths are also high), others do not notice

any difference (e.g., user27). We observe that the default scheme and pop-up model as the most

and least satisfied models, respectively. This is expected, since we also see the the most session

reductions with pop-up models in Figure 6.4. Another interesting point is that although session

lengths are reduced more with gradual model, we observe their ratings higher than the rapid model.

The reasoning again could be that the rapid brightness changes become disturbing sooner than

gradual models. Thus, for rapid model, users both give lower ratings and also alter brightness,

which results in the model resetting its timing. Overall, the average ratings between models is

not statistically significant: 4.44, 4.33, 4.31, and 4.17 for the default, gradual, rapid, and pop-up
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models, respectively. Further, we conduct ANOVA test on the normalized values to see how the

results of the four models differ from each other. We observe the p-value as 0.9649, which means

that with the proposed models, we can indeed reduce maximum session lengths with no significant

impact on user satisfaction.

6.3.4 Power Consumption Analysis

Figure 6.6(b)(top) plots the power consumption values of the four tested models for our 30 users.

Similar to Figure 6.6(a)(bottom), in Figure 6.6(b)(bottom), for each user, we calculate the relative

change on power records based on their default model’s record using the equation 6.3. As shown

in Figure 6.6(b), default scheme’s power consumption is highest in 8 out of the 30 users. Overall,

our models are successful in saving power: on average, gradual, rapid, and pop-up models save

5.68%, 3.23% and 5.08% system power, respectively. Please note that these power savings are

system level and acquired by reducing phone usage and dimming brightness overuse. However,

it is possible to make dimming mechanisms more aggressive with different thresholds to increase

power saving. We should also note that, since we monitor the power consumption on the target

phones from the operating system, the recorded power values are when the phones’ CPUs are

active, thus the average energy consumption comparisons are also same as power consumption

comparisons.

6.4 Discussion

User selection. As discussed in the introduction in Chapter 6, all of our users are participants who

downloaded our application from Google Play Store just like any other application. Although it

is possible to see some similarities (or differences) in the user data based on age, gender, or being

tech savvy or not, due to privacy concerns, we do not collect personal information of our users.

However, based on Google’s statistics, our users are from 10 different countries where majority of

them are from United States, India, Pakistan, UAE, and S.Africa.

Limitations. While we are aware that the proposed system (PhoneFree) may raise some con-
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cerns over usability issues for particular people (i.e. elderly people or people with visual disorder

etc.), in this study we focus on mitigating smartphone overuse owing to the negative effects asso-

ciated with it. Notably, such system could be pivotal for parents who aim to restrict screen time of

their children and as well as individuals who want to limit their excessive phone or application us-

age (i.e. limiting game or social media applications etc.). Moreover, since the system is developed

in application level, it is also possible to personalize the system by defining specific applications

or setting different time-thresholds based on the individual preferences.

6.5 Summary

In this project, we propose a system to reduce excessive smartphone use. The system relies on the

hypothesis that degrading user experience on the phone by altering brightness levels or showing

pseudo pop-ups on the screen will yield users spend less time with their applications and their

phones. In order to test this hypothesis, we develop three different models to degrade user satisfac-

tion on the phone: gradually or rapidly dimming brightness and showing pseudo pop-ups on the

screen.

We evaluate the proposed models by conducting user studies in the wild by releasing a logger

application into the Google Play Store. Users test each model and default scheme in a random

order each day, representing a combined total of over 240 days of worth of recorded use. We reg-

ularly collect overall user experience ratings about the phone display through 5-point likert chart

questionnaires. Our results show that with the proposed models, on average we can reduce maxi-

mum application session duration by up to 37.82% with a negligible sacrifice on user experience.

Moreover, due to brightness dimming mechanisms and reduced usage with the proposed models,

we can save energy especially in prolonged use scenarios. Our results also show that the proposed

system saves up to 5.68% system level power when compared to the default scheme.
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RELATED WORK

In this chapter I present related works. Even though the number of works in mobile devices and/or

user experience is excessive, in this chapter, I focus on the works which are more closely related

with our studies.

7.1 CPU Settings and User Experience

Although, there are many works concentrated on energy optimizations and/or CPU scaling on mo-

bile multicore architectures, majority of these works do not consider end user. More importantly,

our studies’ novelty in this dissertation lies in considering the individual user and automatically

customizing CPU management for each user by using system metrics or built-in sensors. Addition-

ally, majority of the existing work perform energy optimizations on specific conditions/applications

(e.g., while screen is off, while there is no user interaction). In this section, I focus on the papers

that are more closely related to ours.

Shye et al. [119] perform an in-the-wild user study in order to understand smartphone usage

patterns. Then they use these patterns to guide power optimizations. Specifically they propose a

smooth CPU frequency-decreasing scheme in order to save energy without impacting user satis-

faction. Their work does not deal with user satisfaction or individual user customization. Li et al.

[89] introduce SmartCap, a statistical scheme for power adaptation for smartphone processor based

on the user experience. They use system metrics in the smartphone (i.e., CPU utilization) and user

reports to model user experience based on tested applications. They study 27 applications with 20

users and keep each application’s satisfied configuration for each user. They show similar results

on energy savings and unnecessary high frequency usage of the default scheme. Our studies differ

from theirs as we do not ask the users for ratings, but rather infer the satisfaction/dissatisfaction

information from the built-in sensors. Pasricha et al. [104] propose an application and user aware
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power optimization scheme. Similar to the work by Li et al. [89], they monitor system metrics on

the phone to understand user interactions with each application. Then with a learning model that is

based on the user interaction in the current application, they implement their CPU and brightness

optimizer scheme in order to save energy. Such application-dependent approaches have limita-

tions: for each new application, considerable amount of work is necessary. Also, they do not adapt

to changes in user preferences. We also discuss these limitations in more detail in Section 7. In

contrast to these studies, the work presented in this dissertation does not require any application

information. Matthew et al. [62] conduct a crowd sourcing study to analyze the impact of CPU

changes in user satisfaction. They record gameplays while setting the smartphone CPU to different

core and frequency configurations and make users rank the video based on their performance pref-

erences. Their results show that, users react differently to changes in CPU frequency for different

workloads. The variation in user performance preferences is also one of the main motivations of

the projects presented in this dissertation. Shye et al. [118] develop hardware devices and moni-

tor user physiological traits in order to understand hardware requirements in a traditional desktop.

Although they conduct user studies on a traditional desktop, their test setup and findings show sim-

ilarities (i.e., user expectation varies drastically). Specifically, they measure galvanic skin response

and implement a force sensor on the keyboard in order to control CPU frequency. They also show

significant power savings at the system level. Note that the sensors they use are specifically built

for the purpose of user satisfaction prediction, whereas we use built-in sensors. In [38], authors

propose a frequency controller based on trained performance and power models. They test their

controller on web page loading/execution scenarios. Lo [91] predicts execution times of upcoming

tasks in order to scale DVFS on smartphones. Lee et. al. [134] predict execution time of appli-

cations in the cloud in order to save memory and computation overhead on the smartphone. Lee

et. al. [135] propose a battery and user aware QoS scaling system. They use users’ performance

expectations in different battery levels and scale CPU frequency accordingly. In our studies, we do

not utilize current battery state on the phone. Although in general, these studies prove that there is

significant room for improvement, they do not include tests with real users, which our study does.
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Other studies [120, 131, 24, 3] do not involve real users but use QoS (Quality of Service) and

QoE (Quality of Experience) metrics to define user experience and propose power optimization

schemes. In these studies, user experience is measured by defining delay-thresholds to tasks and

making sure that these thresholds are not surpassed. For example, Tseng et al. [131] propose a

user-centric CPU scheduler by grouping applications based on their user interactions and try to

minimize delays on the threads of these applications: if the user interaction lasts longer for an

application, scheduler increases the priority of its threads. Although these studies prove that there

is significant room for improvement, they do not include tests with real users, which our study

does.

7.2 Display Brightness and User Experience

Although there are many works concentrating on display brightness in smartphones, majority of

these works do not consider individual users and/or use proxy metrics. In this section, I focus on

the effects of brightness setting on user experience.

Kelly et al. [74] define visual performance as the speed and accuracy of processing visual in-

formation. They show that there is a strong correlation between the screen brightness and visual

performance. Studies [114, 119, 118] conduct real user tests to save energy by dimming the screen

brightness while monitoring user experience. One common observation these studies made is that

brightness of the screen has a direct and instantaneous effect on user satisfaction. Schuchhardt et

al. [114] measure readability of the screen while gradually dimming the brightness from its default

settings. They show that users try to adapt the changes until they struggle to see the screen. Their

mechanism builds on the default scheme and learns user preferences. However, (a) they build on

top of ambient light sensor rather than a new model, thus their models still largely depend on am-

bient light value, (b) they do not include the rich set of sensors we use in our mechanism, (c) they

do not develop a user-independent model to compare, (d) they do not include any optimization on

energy consumption, and finally (e) our study reaches a much wider audience as our applications

are available on Play Store Shye et al. [119] collect user display satisfaction ratings as they grad-
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ually drop the brightness. Their results show that users hardly notice a gradual changes on the

brightness even after 40% reduction. However, after a threshold, they observe significant drops on

user satisfactions. Both studies also show significant energy savings with small sacrifice on user

satisfaction.

Sutika et al. [125] analyze the relation between brightness and smartphone usage for the elderly

people. They demonstrate that users frequently change their brightness settings (manually) during

their use, showing the importance of brightness settings during the phone usage. Yu et al. [149] fo-

cus on the importance of brightness levels on user experience and propose automatic color scheme

adjustment to improve user experience. Guterman et al. [60] analyze user satisfaction of display

panel brightness. Their primary result is that brighter display panels are not always preferable, and

that overly bright displays can actually be less preferred. Studies [27, 78] examine the relation

between brightness level and user experience and propose auto-brightness control mechanisms to

increase user satisfaction.

The work presented in this dissertation differs from the above listed studies in various ways.

All the presented works above focus on maximizing or at least keeping the same user experience

on smartphone display. Whereas, we specifically aim to utilize brightness to induce discomfort

on users in order to reduce excessive phone and application usage. Moreover, we conduct our

experiments in-the-wild with real users, which separates our works from the majority of the above

mentioned works.

7.3 User Characterization Using Mobile Sensors

There are many studies using mobile sensors for different purposes. One of the most popular

research areas is activity recognition [4]. Today’s mainstream smartphones with various motion

sensors, including accelerometer, GPS, gyroscope, compass, etc. provide a rich data source avail-

able to be mined in order to get insights of people’s daily activities (walking, jogging, standing

etc.) [124]. Activity recognition is popular, because it classifies people’s actions, which can be

exploited in many different areas. There are many works studying activity recognition using the
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embedded motion sensors on mobile devices [40, 84, 81, 6]. One of the main differences of all

these prior work is either recognizing activity type (as simple or complex activities) or using differ-

ent feature selection techniques and models in the predictions. Among them Dernbach et al. [40]

collect accelerometer sensor data while users execute seven complex activities. While their mod-

els can predict simple activities with around 80% accuracy, with complex activities their accuracy

drops to 50%. Le at al. [84] investigate combinational feature selection and reduce dimensionality

on datasets in order to increase computation speed. They achieve 3 to 5 times faster performance.

Kose et al. [81] compare Naive Bayes classifier and K-Nearest Neigbor (kNN) classifier in activ-

ity recognition and observe better accuracy with kNN algorithms. Although these studies focus

specifically on detecting activities rather than detecting user-satisfaction related behaviors, they

show similar methodologies on collecting sensor data. Emotion and stress detection using mobile

devices are other widely studied areas in recent years. Egilmez et al. [44] conduct stress inducing

user experiments by monitoring user behaviors with using five different mobile devices (including

a galvanic skin conductor). They find distinct behavior patterns among users when they are under

stress and show 88% accuracy on predicting stress. EmotionSense [108] classifies users’ emotions

based on speech records and location (using motion and GPS sensors). Although they can detect

high arousal emotions (stress, anger) easily, they generally fail on classifying more complex low

arousal emotions. StressSense [94] is another stress classifier based on the human speech pat-

terns. The authors conduct stress inducing user studies and accurately classify stress situations

[94]. However they do not study other emotions. MoodScope [90] predicts users’ moods by col-

lecting usage patterns along with users’ mood reports through an application. However they do not

collect any built-in sensors. Lee et al. [85] classify emotions by collecting data on various metrics,

including touch events, typing speed, time, location, and weather. Their results show that they can

predict seven emotional states with 67.5% accuracy. However, the relationships of each feature

and emotions identified in the study have not been clearly validated as only a single user is studied.

The work presented in this dissertation differs from the above listed studies in various ways.

Unlike the user characterization studies mentioned above, we use mobile sensors in order to see
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hardware requirements of smartphone users. Therefore, we do not include any stress or specific

emotion inducing experiments in the user studies. From this point, our work in chapter 3 is similar

to the work by Shye et al. [118], where psychological traits to understand hardware requirements

are monitored. However, we study hardware requirements in smartphones (rather than desktops)

and use built-in sensors from two popular devices: a smartphone and a smartwatch (rather than de-

veloping dedicated hardware sensors). Moreover, the proposed system is application-independent

and solely depends on user sensor data, which makes it more adaptable to changing conditions.

We also discuss application-dependent implementations’ limitations in Section 7. Finally, we use

30 real users to validate the proposed system, which separates the work presented in this disserta-

tion from studies using QoS and QoE metrics for user experience. To the best of our knowledge,

this is the first study that uses built-in sensors on understanding CPU requirements of users on a

smartphone.

7.4 Quantifying User Experience

There are many works on quantifying user experience on smartphones. However majority of these

works do not involve real users and/or use proxy metrics. I focus on the works that are more closely

related to ours as below.

Huang et al. [66] conduct user studies to quantify user satisfaction in mobile cloud games.

They want users play games from a PC and mobile platform and rate their experience on graphics,

smoothness, and control. Then they correlate user ratings with these system parameters. Our stud-

ies differ from theirs as (i) we study energy savings’ impact on user satisfaction rather than system

parameters’ and (ii) we conduct our studies in the wild. Matthew et al. [62] conduct a crowd sourc-

ing study to analyze the impact of CPU changes in user satisfaction. They record game plays while

setting the smartphone CPU to different core and frequency configurations and want users rank the

video based on their performance preferences. Then they quantify user satisfaction with the tested

CPU configurations. Their results show that users react differently to changes in CPU frequency

for different workloads. The crowd source methodology and the variation in individual user prefer-
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ences is also one of the motivations of the projects presented in this dissertation. However, similar

to other works, the distinction of our works is in understanding the impact of energy savings. Chen

et al. [30] quantify VoIP user satisfaction by analyzing the call duration from actual Skype traces.

Instead of using real users, they form a user satisfaction index composed by objective source- and

network-level metrics, such as the bit rate, bit rate jitters, and round-trip time. Similarly, Chen et.

al. [32] quantify quality of service (QoS) and quality of experience (QoE) metrics on smartphone

video streaming applications. Most of these works quantify user experience/satisfaction with sys-

tem metrics rather than energy savings. Amdone et al. [9] quantify user experience on wearable

fitness technologies in order to increase user satisfaction. They quantify physical comfortable of

users, rather than energy savings’ effect.

Studies [144, 36, 130] design battery interfaces and investigate theirs effects on users’ be-

haviours. Among them Jung et.al. [144] propose a battery-user interaction tool to inform users

about their battery level and battery consumption. Then they compare users’ phone usage behav-

iors before and after learning battery information. Their results show that, by learning the battery

information, users are more likely to change their phone usage behaviors towards energy savings.

In contract to [144], in our studies, we neither provide battery-user interaction tool nor monitor

users’ behaviours, but instead we quantify user satisfaction based on the energy savings. Truong et

al. [130] propose the task-centered battery interface (TCBI), which is a battery interface that accu-

rately calculates the remaining battery time on a device. The TCBI offers the estimated remaining

battery life on a device for a few predefined cases while taking into account currently activated

applications. The interactive battery interface (IBI) proposed by Ferreira et al. [36] also shows the

remaining battery life and provides functionality to terminate activated applications.

7.5 Excessive Smartphone Usage’s Effects on Individuals

There are many studies focusing on the relation between excessive smartphone usage and its harm-

ful effects on individuals. Billieux et al.[23] show strong similarities between excessive phone us-

age and behavioral addiction. Similary, Tossell et al. [129] investigate smartphone user behaviors
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and their relation to self-reported smartphone addiction. Specifically, they give 34 non-smartphone

users a smartphone and monitor their usage behaviours over a year. Their result show that at the

end of one year period, 62% of the users show addictive behaviors. Xie et al. [145] show that par-

ents’ social exclusion with mobile phone interruption is a risk factor for adolescent mobile phone

addiction.

There are many studies focusing on the relation between the academic performance of college

students and smartphone use due to its possible distracting or disruptive side effects to academic

focus. Felisoni et al. [48] conduct an experiment to test the relationship between average time

students spend using their smartphones per day and their academic performance. Their analysis

yield a significant negative relationship between total time spent using smartphones and academic

performance: each 100 min spent using the device on average per day corresponded to a reduction

in a student’s position at the school’s ranking of 6.3 points, on a range from 0 to 100. Winskel

et al. [143] examine smartphone usages of 389 students and they also show that the more time a

student spends using their smartphone, the more at risk they are for problematic smartphone use

and possible academic performance costs. Similarly, Uzun et al. [132] shows that after controlling

particular demographics (i.e., age, gender, year of study, etc.), overuse of media and technology

tools significantly degrades the students’ academic performance.

There is a plethora of studies focusing on phone usage during the classroom. Kim et al. [77]

conduct a 14-week measurement study in the wild with 84 first-year college students. Their results

show that, students use their phones for more than 20 min per class. Also, they show that excessive

daily and in-class use habits have a negative relationship with student grades. Waite et al. [140]

examine impacts of concurrent off-task text messaging during an academic presentation on the

students’ performance on tests. They show that such media multitasking negatively impacts the

quality of note-taking during the presentation and reduce learning.

Studies [70, 71, 79, 69, 86] focus on the impact of both smartphone and media application

usage on students. Jankovic et al. [70] conduct a study with 485 students and show that in cases of

a lack of time, students are more likely to sacrifice academic work, rather than time for Facebook
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or smartphones in general. Similarly, studies [71, 79] show that Facebook users declared having

lower levels of GPA and that they devoted fewer hours to studying per week than non-Facebook

users. Huang [65] shows a negative mean correlation between social networking site usage and

academic performance. Studies [69, 86] also show negative correlation between calling/texting

and GPA scores.

There are also many works that show negative impacts of excessive phone usage on mental

health. Ali et.al [5] show that daily excessive phone usage was significantly associated with dis-

turbed sleep pattern and sleep quality. Valasareddy et al. [133] conduct a survey to analyze the

impact of bedtime smartphone usage on sleep health. Their results show that, 50% of the bedtime

smartphone users perceive sleep deprivation and 83.3% of the users perceive adverse effects such

as restlessness in the morning after high smartphone usage the previous night. Studies [128, 148]

show associations between long and frequent mobile phone use and mental health outcomes, such

as depression and anxiety symptoms.

7.6 Reducing Smartphone Usage on Individuals

There exists substantial amount of works focused on reducing the excessive smartphone usage.

Studies [92, 80, 103] introduce filtering and blocking applications in order to reduce interactions.

They show significant improvements on reducing the number of user interactions with smartphones

in daily use. Similarly, some smartphone manufacturers introduce methods to limit phone or ap-

plication usage [67, 15]. One common characteristics of these methods is to force a hard time

threshold to restrict access for a specific application or phone as a whole. Although their efficacy

is unknown on reducing the phone usage in daily life, there are other studies focusing on the effects

of restricting access to smartphones. Cheever et al. [2] show that on heavy and moderate smart-

phone users, restriction make participants significantly more anxious over time. Studies [45, 95]

show that smartphone restriction could cause withdrawal symptoms on the users. In our proposed

architecture, we do not implement any restriction to the phone or application, instead gradually

create user discomfort on the target smartphone in order to reduce overuse. Moreover, we aim to
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mitigate prolonged usages rather than reducing the number of interactions.

There exists a lot of works introducing interventions and social/peer supports to mitigate phone

overuse [80, 76, 88, 117]. Kim et al. [76] propose a software-based intervention in order to encour-

age participation and raise awareness regarding appropriate mobile phone usage to establish social

norms in college classrooms. Li et al. [88] show that there is an increasing number of adolescents

suffering from depression due to mobile phone addiction and social support and positive emotions

can lower levels of depression among adolescents. Shen et al. [117] introduce intervention strate-

gies for preventing smartphone overuse. Similarly, the distinction of our studies is that, we do not

create any social or peer support nor apply interventions in order to reduce overuse.
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CHAPTER 8

CONCLUSION

8.1 Concluding Remarks

In this dissertation, I integrate individual users’ satisfactions with the design of mobile systems

and their optimizations. The motivation behind the work presented in this dissertation is grounded

in addressing the suboptimality of the current mobile systems. Particularly, the current mobile

systems typically generalize their respective decisions as if they are developed solely toward the

average user while allowing too little room for the implementation of individualized personal set-

tings. Inefficiency of this approach comes from the assumption that all users are expected to have

maximum satisfaction with a one-size-fits-all design. In other words, the assumption goes as if

all the users have the exact same or, more closely, similar set of demands and preferences regard-

ing their mobile devices. However, following and building on some of the prior work, in this

dissertation I showed that users’ preferences and demands tend to vary significantly even under

the same workloads and/or conditions. Thus, there is a need for systems which utilize the differ-

ences between user’s preferences and needs for developing better sysstem designs. Hence, if we

can (somehow) know end user’s instantaneous satisfaction about the system, we can then utilize

this information to have a number of benefits: we can create dynamic user-aware decision-making

mobile systems or try to avoid bad habits associated with smartphones.

However, the challenge here arises from measuring and integrating the instantaneous user sat-

isfaction in real time. User satisfaction is inherently a subjective metric, which is affected often

times by the limits of human perception and the preconceptions of an individual. As I discussed in

chapters 2 and 3, I correlate user satisfaction with system metrics and built-in sensors on a smart-

phone. To put in brief, I show that user satisfaction can be correlated with system metrics and

built-in sensors in a smartphone with an accuracy of over 90%. This is important, because know-
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ing user’s instantaneous satisfaction about their phones can be utilized in many different areas of

research. In this dissertation I utilize instantaneous user satisfaction, as a means for two distinct

purposes.

In the first approach, I first utilize user satisfaction as a feedback input in order to better manage

hardware resources. The aim is to maximize user satisfaction while minimizing energy consump-

tion. Thus, I focus on bridging the gap between hardware resource management and end user

experience by conducting various user studies. As discussed in Chapters 2-4, I conducted user

studies both in-the-lab and in-the-wild with the aim of optimizing the two most power hungry

components: mobile CPU and screen. As I show in the results, we can achieve up to 15% energy

savings on average with no impact on user satisfaction.

In the second approach, I show an alternative usage of user satisfaction where I use it to avoid

harmful habits associated with smartphones. Notably, in this approach, I degrade user experience

with the aim of mitigating overuse of smartphones. As our user studies have showed, we can

decrease the maximum phone usage up to 37% with a negligible impact on user experience.

8.2 Summary of Contributions

Summary of main contributions in this dissertation are as listed below. I should note that, since

indicated in Chapter 1 (Section 1.3 more specifically) the work in this presentation comes from

a set of collaborative work with several co-authors; thus, I have listed the contributions by using

“we” in order to refer to myself as well as my co-authors.

• User satisfactions with the CPU performance and display brightness of their smartphones

vary considerably between applications being used as well as users.

• Smartphone CPU configurations with more cores can lead to higher energy consumption

without increasing user satisfaction for some applications, but more cores are necessary to

achieve maximum satisfaction for other applications.
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• Using only ambient light sensor is not sufficient for capturing the variation in user brightness

preferences and data from other sensors are highly correlated with these preferences.

• We propose systems that utilize either user-facing metrics or built-in sensors on smartphones

to predict user satisfaction to manage hardware resources (CPU and screen) in real-time in

order to save energy and maximize user experience.

• We show light-weight tools and methods to develop personalized models that learn from

personal performance (CPU) and brightness preferences in the wild.

• We quantify and present analysis on the relation between energy savings and user satisfac-

tion.

• We show alternative ways to use user satisfaction. Particularly, we develop a system that

utilizes brightness settings on a smartphone for the purpose of degrading user experience as

a means of limiting excessive smartphone or application usage.

8.3 Possible Avenues for Further Research

While the work in this dissertation has shown considerable benefits of integrating user satisfaction

in mobile devices, there still remains many avenues of research yet to be explored. I outline some

potential directions below.

Possible challenges of building fully-adaptable mobile devices. During the course of my

studies, I have worked on building systems that personalize specific hardware components to in-

crease user satisfaction while minimizing energy consumption at the same time. As I discussed

in chapters 2-4 at length, in the proposed systems, we have correlated user satisfaction inputs

with system metrics or built-in sensors on smartphones. Although we study a specific hardware

component at a given time, the proposed systems can be extended to optimize more components si-

multaneously. For example, a system can decrease CPU cores and increase brightness if this leads

to more energy savings and increased user satisfaction. However, one challenge of such system
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could be the increase in the number of scenarios. Notably, as the number of hardware components

increases, it is expected that the adaptation of the system would take more time, since the system

would need to encounter more scenarios in order to make the optimal decisions. We have visioned

such systems for our screen study that is discussed at length in chapter 4 where we have considered

altering both screen brightness and CPU configurations for (more) energy savings.

Another challenge of personalizing (and optimizing) multiple components at the same time

arises from the need of more user inputs. In our studies we generally collected user feedback

through the logger applications we have built. However, we observed that, users tend to lose their

attention quite fast as the test duration increases. Thus, we mostly kept our studies in the duration

of just a week. However, if we are to build a system that optimizes multiple components, we may

need to consider more easy input mechanisms for users. We have considered such mechanisms by

testing nfc buttons in the early years of my graduate studies.

More alternative ways of utilizing user satisfaction in mobile devices. In the work presented

in this dissertation, I utilize user satisfaction mainly for two different purposes: managing hardware

resources (chapters 2-4) and avoiding bad habits with smartphones (chapter 6). However, there are

many more possible fields of research that can utilize user satisfaction in mobile devices. One

example can be drawn from the hypothesis that based on the workload and web sites to be visited,

some users may be willing to sacrifice their WiFi signal power if it leads to more power savings.

For these users, a dynamically adaptive model that controls WiFi signal power could be beneficial

in terms of energy savings (and possibly for better network traffic). Similar to the idea discussed

in chapter 6, user satisfaction can also be utilized to avoid/limit smartphone usage under certain

conditions (i.e. driving, gambling etc.).

Defining different thresholds. As I discussed in chapters 2 & 3, during our user studies,

we have collected user satisfaction reports in 3-level (as numeric 0-very unhappy, 1-unhappy and

2-happy). We have correlated these reports with phone-based metrics in order to build satisfaction-

prediction models. Then based on the outputs of prediction models, we determined some thresh-

olds for the subsequent decision making. For example, when the prediction is below 1.25, we
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assume the user is unhappy and alter the core count accordingly. Similarly when it is above 1.75,

we assume the user is happy and decrease the core count to save energy. It is important to note that

although we have determined these thresholds, it is still possible that with some other threshold,

system can achieve more power savings and/or can achieve better user experience. Moreover, these

thresholds can be user-specific in order to reflect user’s satisfaction in a finer grain fashion.

Building the systems at the kernel level. All the work I have presented in this dissertation

is built at the system-level. We do this in order to conduct our studies with a wider audience in

the wild (with users’ own smartphones). In the case that the models and optimizations were to be

implemented at the kernel-level, it is possible to observe more energy savings and less overhead to

the overall phone.
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